Suppr超能文献

FGTI-2734抑制ERK再激活以克服KRAS G12C肺癌中的索托拉西布耐药性。

FGTI-2734 Inhibits ERK Reactivation to Overcome Sotorasib Resistance in KRAS G12C Lung Cancer.

作者信息

Kazi Aslamuzzaman, Vasiyani Hitesh, Ghosh Deblina, Bandyopadhyay Dipankar, Shah Rachit D, Vudatha Vignesh, Trevino Jose, Sebti Said M

机构信息

Department of Pharmacology and Toxicology and Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.

Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia.

出版信息

J Thorac Oncol. 2025 Mar;20(3):331-344. doi: 10.1016/j.jtho.2024.11.022. Epub 2024 Nov 26.

Abstract

INTRODUCTION

KRAS G12C targeted therapies, such as sotorasib, represent a major breakthrough, but overall response rates and progression-free survival for patients with KRAS G12C lung cancer are modest due to the emergence of resistance mechanisms involving adaptive reactivation of ERK, which requires wild-type HRAS and NRAS membrane localization.

METHODS AND RESULTS

Here, we demonstrate that the dual farnesyltransferase and geranylgeranyltransferase-1 inhibitor FGTI-2734 inhibits wild-type RAS membrane localization and sotorasib-induced ERK feedback reactivation, and overcomes sotorasib adaptive resistance. The combination of FGTI-2734 and sotorasib is synergistic at inhibiting the viability and inducing apoptosis of KRAS G12C lung cancer cells, including those highly resistant to sotorasib. FGTI-2734 enhances sotorasib's anti-tumor activity in vivo leading to significant tumor regression of a patient-derived xenograft (PDX) from a patient with KRAS G12C lung cancer and several xenografts from highly sotorasib-resistant KRAS G12C human lung cancer cells. Importantly, treatment of mice with FGTI-2734 inhibited sotorasib-induced ERK reactivation in KRAS G12C PDX, and treatment of mice with the combination of FGTI-2734 and sotorasib was also significantly more effective at suppressing in vivo the levels of P-ERK in sotorasib-resistant human KRAS G12C lung cancer xenografts and the NSCLC PDX.

CONCLUSION

Our findings provide a foundation for overcoming sotorasib resistance and potentially improving the treatment outcomes of KRAS G12C lung cancer.

摘要

引言

KRAS G12C靶向疗法,如索托拉西布,代表了一项重大突破,但由于涉及ERK适应性重新激活的耐药机制的出现,KRAS G12C肺癌患者的总体缓解率和无进展生存期并不理想,而这需要野生型HRAS和NRAS的膜定位。

方法与结果

在此,我们证明双法尼基转移酶和香叶基香叶基转移酶-1抑制剂FGTI-2734可抑制野生型RAS的膜定位以及索托拉西布诱导的ERK反馈重新激活,并克服索托拉西布的适应性耐药。FGTI-2734与索托拉西布联合使用在抑制KRAS G12C肺癌细胞(包括对索托拉西布高度耐药的细胞)的活力和诱导其凋亡方面具有协同作用。FGTI-2734在体内增强了索托拉西布的抗肿瘤活性,导致来自KRAS G12C肺癌患者的患者来源异种移植瘤(PDX)以及来自对索托拉西布高度耐药的KRAS G12C人肺癌细胞的多个异种移植瘤显著消退。重要的是,用FGTI-2734治疗小鼠可抑制KRAS G12C PDX中索托拉西布诱导的ERK重新激活,并且用FGTI-2734和索托拉西布联合治疗小鼠在体内抑制索托拉西布耐药的人KRAS G12C肺癌异种移植瘤和非小细胞肺癌PDX中的P-ERK水平方面也显著更有效。

结论

我们的研究结果为克服索托拉西布耐药并潜在改善KRAS G12C肺癌的治疗结果提供了基础。

相似文献

1
FGTI-2734 Inhibits ERK Reactivation to Overcome Sotorasib Resistance in KRAS G12C Lung Cancer.
J Thorac Oncol. 2025 Mar;20(3):331-344. doi: 10.1016/j.jtho.2024.11.022. Epub 2024 Nov 26.
2
Sotorasib for the treatment of locally advanced/metastatic non-small cell lung cancer.
Future Oncol. 2025 Jan;21(1):63-71. doi: 10.1080/14796694.2024.2430172. Epub 2024 Nov 27.
4
Differential Response and Resistance to KRAS-Targeted Therapy.
Mol Carcinog. 2025 Jul;64(7):1135-1148. doi: 10.1002/mc.23908. Epub 2025 Apr 21.
6
Sotorasib plus Panitumumab in Refractory Colorectal Cancer with Mutated G12C.
N Engl J Med. 2023 Dec 7;389(23):2125-2139. doi: 10.1056/NEJMoa2308795. Epub 2023 Oct 22.
7
KRAS Inhibitor Resistance in -Amplified Non-Small Cell Lung Cancer Induced By RAS- and Non-RAS-Mediated Cell Signaling Mechanisms.
Clin Cancer Res. 2021 Oct 15;27(20):5697-5707. doi: 10.1158/1078-0432.CCR-21-0856. Epub 2021 Aug 7.
9
An updated overview of K-RAS G12C inhibitors in advanced stage non-small cell lung cancer.
Future Oncol. 2024;20(37):3019-3038. doi: 10.1080/14796694.2024.2407280. Epub 2024 Oct 3.

引用本文的文献

本文引用的文献

1
Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers.
Science. 2024 Jun 7;384(6700):eadk0775. doi: 10.1126/science.adk0775.
2
The fate of sotorasib: a regulatory failure potentially harming patients.
Lancet Oncol. 2024 May;25(5):549-552. doi: 10.1016/S1470-2045(23)00616-2.
3
Targeting KRAS in cancer.
Nat Med. 2024 Apr;30(4):969-983. doi: 10.1038/s41591-024-02903-0. Epub 2024 Apr 18.
4
Concurrent inhibition of oncogenic and wild-type RAS-GTP for cancer therapy.
Nature. 2024 May;629(8013):919-926. doi: 10.1038/s41586-024-07205-6. Epub 2024 Apr 8.
5
Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies.
Signal Transduct Target Ther. 2023 Dec 18;8(1):455. doi: 10.1038/s41392-023-01705-z.
7
Current Challenges and Future Advances in Lung Cancer: Genetics, Instrumental Diagnosis and Treatment.
Cancers (Basel). 2023 Jul 21;15(14):3710. doi: 10.3390/cancers15143710.
8
Kinetics of RTK activation determine ERK reactivation and resistance to dual BRAF/MEK inhibition in melanoma.
Cell Rep. 2023 Jun 27;42(6):112570. doi: 10.1016/j.celrep.2023.112570. Epub 2023 May 29.
9
Direct GDP-KRAS inhibitors and mechanisms of resistance: the tip of the iceberg.
Ther Adv Med Oncol. 2023 Mar 16;15:17588359231160141. doi: 10.1177/17588359231160141. eCollection 2023.
10
Novel mutant KRAS addiction signature predicts response to the combination of ERBB and MEK inhibitors in lung and pancreatic cancers.
iScience. 2023 Jan 31;26(3):106082. doi: 10.1016/j.isci.2023.106082. eCollection 2023 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验