ARO, The Volcani Center, Rishon LeZion, 15159, Israel.
Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel.
BMC Genomics. 2024 Nov 27;25(1):1147. doi: 10.1186/s12864-024-11074-8.
Routine genomic-estimated breeding values (gEBVs) are computed for the Israeli dairy cattle population by a two-step methodology in combination with the much larger Dutch population. Only sire genotypes are included. This work evaluated the contribution of cow genotypes obtained from the Israeli Holstein population to enhance gEBVs predictions via single-step genomic best-linear unbiased prediction (ssGBLUP). The gEBV values of 141 bulls with daughter information and high reliabilities for 305-day lactation yield of milk, fat, and protein were compared with the bulls' predicted ssGBLUP-gEBVs using a truncated dataset omitting production data of the last five years. We investigated how these sire gEBVs were affected by varying polygenic weights in the genomic relationship matrices and by deleting old phenotypic or genotypic records.
The correlations of the predicted gEBVs for milk, fat and protein computed from the truncated data with the current gEBVs based also on daughter records of the last five years were 0.64, 0.57, and 0.56, respectively, for a polygenic weight of 0.5, similar to the values achieved by the current two-step methodology. The regressions of the current gEBVs on the predicted values were 0.9 for milk and 0.7 for fat and protein. Genotyping of 1.8-5 cows had the approximate statistical power of one additional bull depending on the trait. Omitting phenotype records earlier than 2000 resulted in similar gEBV values. Omitting genotypes before 1995 improved the regression coefficients. For all experiments, varying the polygenic weights over the range of 0.1 to 0.9 resulted in a trade-off between correlations and overestimation of gEBVs for young bulls.
The model suffers from overestimation of the predicted values for young bulls. The time interval used for inclusion of genotypic and phenotypic records and adjustment of the polygenic weight can improve gEBV predictions and should be tuned to fit the tested population. For relatively small populations, genotyping of cows can significantly increase the reliability of gEBVs computed by single-step methodology. By extrapolation of our results, records of ~ 13,000 genotyped cows should provide a sufficiently large training population to obtain reliable estimates of gEBVs using ssGBLUP.
以色列奶牛群体的常规基因组估计育种值(gEBV)是通过两步法结合更大的荷兰群体计算得到的。仅包括了父本基因型。本研究评估了从以色列荷斯坦牛群体中获得的母牛基因型对通过单步基因组最佳线性无偏预测(ssGBLUP)提高 gEBV 预测的贡献。比较了 141 头具有女儿信息且 305 天泌乳量、脂肪和蛋白质产奶量可靠性较高的公牛的 gEBV 值与利用排除过去五年生产数据的截断数据集预测的公牛 ssGBLUP-gEBV 值。我们研究了在基因组关系矩阵中改变多基因权重和删除旧的表型或基因型记录如何影响这些父本 gEBV。
当多基因权重为 0.5 时,基于过去五年女儿记录的当前 gEBV 计算的截断数据预测的 gEBV 值与牛奶、脂肪和蛋白质的相关系数分别为 0.64、0.57 和 0.56,与当前两步法获得的值相似。当前 gEBV 值对预测值的回归分别为牛奶的 0.9 和脂肪和蛋白质的 0.7。对 1.8-5 头母牛进行基因分型大约相当于增加了一头公牛的统计效力,具体取决于性状。早于 2000 年的表型记录的省略导致 gEBV 值相似。早于 1995 年的基因型的省略提高了回归系数。对于所有实验,在 0.1 到 0.9 的范围内改变多基因权重会导致 gEBV 对年轻公牛的相关性和高估之间的权衡。
该模型对年轻公牛预测值的高估。用于包括基因型和表型记录以及调整多基因权重的时间间隔可以改善 gEBV 预测,并且应该根据测试的群体进行调整。对于相对较小的群体,母牛的基因分型可以显著提高单步法计算的 gEBV 的可靠性。通过我们的结果推断,大约 13000 头基因分型母牛的记录应该为使用 ssGBLUP 获得可靠的 gEBV 估计提供足够大的训练群体。