Geng Jinghui, Voitiuk Kateryna, Parks David F, Robbins Ash, Spaeth Alex, Sevetson Jessica L, Hernandez Sebastian, Schweiger Hunter E, Andrews John P, Seiler Spencer T, Elliott Matthew A T, Chang Edward F, Nowakowski Tomasz J, Currie Rob, Mostajo-Radji Mohammed A, Haussler David, Sharf Tal, Salama Sofie R, Teodorescu Mircea
Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA.
bioRxiv. 2024 Dec 14:2024.11.14.623530. doi: 10.1101/2024.11.14.623530.
Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids and brain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.
电生理学提供了一种用于实时测量神经活动的高分辨率方法。来自高密度微电极阵列(HD-MEA)的纵向记录对于本地存储来说规模可能相当大,对于提取神经特征和网络动态来说复杂度也很高。由于需要多个具有不同运行时依赖项的软件工具,分析工作通常要求很高。为应对这些挑战,我们开发了一个基于云的开源管道,用于存储、分析和可视化来自HD-MEA的神经元电生理记录。该管道通过利用云存储、云计算资源和物联网消息协议,不依赖于特定的运行环境。我们将服务和算法进行了容器化处理,使其成为管道内可扩展且灵活的构建模块。在本文中,我们将此管道应用于两种类型的培养物,即皮质类器官和脑片记录,以表明该管道简化了数据分析过程并有助于理解神经元活动。