基于邻近性的蛋白质组学发现揭示的电突触分子多样性

Electrical synapse molecular diversity revealed by proximity-based proteomic discovery.

作者信息

Michel Jennifer Carlisle, Martin E Anne, Crow William E, Kissinger Jane S, Lukowicz-Bedford Rachel M, Horrocks Max, Branon Tess C, Ting Alice Y, Miller Adam C

机构信息

University of Oregon, Institute of Neuroscience, Eugene, OR 97405, USA.

Departments of Genetics, Biology, and by courtesy, Chemistry, Stanford University, Stanford, CA, USA.

出版信息

bioRxiv. 2024 Nov 22:2024.11.22.624763. doi: 10.1101/2024.11.22.624763.

Abstract

Neuronal circuits are composed of synapses that are either chemical, where signals are transmitted via neurotransmitter release and reception, or electrical, where signals pass directly through interneuronal gap junction channels. While the molecular complexity that controls chemical synapse structure and function is well appreciated, the proteins of electrical synapses beyond the gap-junction-forming Connexins are not well defined. Yet, electrical synapses are expected to be molecularly complex beyond the gap junctions. Connexins are integral membrane proteins requiring vesicular transport and membrane insertion/retrieval to achieve function, homeostasis, and plasticity. Additionally, electron microscopy of neuronal gap junctions reveals neighboring electron dense regions termed the electrical synapse density (ESD). To reveal the molecular complexity of the electrical synapse proteome, we used proximity-dependent biotinylation (TurboID) linked to neural Connexins in zebrafish. Proteomic analysis of developing and mature nervous systems identifies hundreds of Connexin-associated proteins, with overlapping and distinct representation during development and adulthood. The identified protein classes span cell adhesion molecules, cytoplasmic scaffolds, vesicular trafficking, and proteins usually associated with the post synaptic density (PSD) of chemical synapses. Using circuits with stereotyped electrical and chemical synapses, we define molecular sub-synaptic compartments of ESD localizing proteins, we find molecular heterogeneity amongst electrical synapse populations, and we examine the synaptic intermingling of electrical and chemical synapse proteins. Taken together, these results reveal a new complexity of electrical synapse molecular diversity and highlight a novel overlap between chemical and electrical synapse proteomes. Moreover, human homologs of the electrical synapse proteins are associated with autism, epilepsy, and other neurological disorders, providing a novel framework towards understanding neuro-atypical states.

摘要

神经元回路由突触组成,突触分为化学突触和电突触。在化学突触中,信号通过神经递质的释放和接收来传递;而在电突触中,信号直接通过神经元间的缝隙连接通道传递。虽然控制化学突触结构和功能的分子复杂性已得到充分认识,但除了形成缝隙连接的连接蛋白外,电突触的蛋白质尚未明确界定。然而,电突触在缝隙连接之外预计在分子层面也很复杂。连接蛋白是整合膜蛋白,需要囊泡运输和膜插入/回收才能实现功能、稳态和可塑性。此外,对神经元缝隙连接的电子显微镜观察揭示了邻近的电子致密区域,称为电突触密度(ESD)。为了揭示电突触蛋白质组的分子复杂性,我们在斑马鱼中使用了与神经连接蛋白相关的邻近依赖性生物素化(TurboID)。对发育中和成熟神经系统的蛋白质组分析确定了数百种与连接蛋白相关的蛋白质,在发育和成年期有重叠和不同的表现。所鉴定的蛋白质类别包括细胞粘附分子、细胞质支架、囊泡运输以及通常与化学突触的突触后密度(PSD)相关的蛋白质。利用具有定型电突触和化学突触的回路,我们定义了ESD定位蛋白的分子亚突触区室,发现电突触群体之间存在分子异质性,并研究了电突触和化学突触蛋白的突触混合情况。综上所述,这些结果揭示了电突触分子多样性的新复杂性,并突出了化学突触和电突触蛋白质组之间的新重叠。此外,电突触蛋白的人类同源物与自闭症、癫痫和其他神经系统疾病有关,为理解神经非典型状态提供了一个新框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f52/11601576/e941b20389c5/nihpp-2024.11.22.624763v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索