Krebs Emanuel, Weymann Deirdre, Ho Cheryl, Bosdet Ian, Laskin Janessa, Lim Howard J, Yip Stephen, Karsan Aly, Hanna Timothy P, Pollard Samantha, Regier Dean A
Cancer Control Research, BC Cancer Research Institute, Vancouver, BC, Canada.
Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
Lancet Reg Health Am. 2024 Nov 15;40:100936. doi: 10.1016/j.lana.2024.100936. eCollection 2024 Dec.
Multi-gene panel sequencing streamlines treatment selection for advanced non-small cell lung cancer (NSCLC). Implementation continues to be uneven across jurisdictions, partly due to uncertain clinical and economic impacts. In British Columbia (BC), Canada, the public healthcare system reimbursed a multi-gene panel in September 2016. This study determined the population-level cost-effectiveness of publicly reimbursed multi-gene panel sequencing compared to single-gene testing for advanced NSCLC.
Our population-based retrospective study design used patient-level linked administrative health databases. We considered adult BC residents with a panel-eligible lung cancer diagnosis between September 2016 and December 2018. Using a machine learning approach, we conducted 1:1 genetic algorithm matching of recipients receiving multi-gene panel sequencing to controls receiving single-gene testing, maximising balance on observed demographic and clinical characteristics. Following matching, we estimated mean three-year survival time and costs (public healthcare payer perspective; 2021 CAD) and calculated the incremental net monetary benefit (INMB) for life-years gained (LYG) at conventional willingness-to-pay thresholds using inverse probability of censoring weighted linear regression and nonparametric bootstrapping.
We matched 858 panel-eligible advanced NSCLC patients to controls, achieving balance for the 16 included covariates. Average test turnaround times were 18.6 days for multi-gene panel sequencing and 7.0 days for single-gene testing. After matching, mean incremental costs were $3529 (95% CI: -$4268, $10,942) and mean incremental LYG were 0.08 (95% CI: -0.04, 0.18). Among the 1000 bootstrap samples, 14.5% had lower costs and increased survival and 78.6% had higher costs and increased survival. The INMB was $523 (95% CI: -$6256, $7023) at $50,000/LYG, with a 57.5% probability of being cost-effective, and $4575 (95% CI: -$5468, $14,064) at $100,000/LYG, with an 84.0% probability of being cost-effective.
Using population-based real-world data, we found a moderate to high probability that panel-based testing to inform targeted treatment for NSCLC would be cost-effective at higher thresholds.
This research was supported by Genome British Columbia/Genome Canada (G05CHS) and the Terry Fox Research Institute.
多基因检测板测序简化了晚期非小细胞肺癌(NSCLC)的治疗选择。不同司法管辖区的实施情况仍不均衡,部分原因是临床和经济影响尚不确定。在加拿大不列颠哥伦比亚省(BC),公共医疗系统于2016年9月报销了多基因检测板的费用。本研究确定了与晚期NSCLC的单基因检测相比,公共报销的多基因检测板测序在人群层面的成本效益。
我们基于人群的回顾性研究设计使用了患者层面的关联行政健康数据库。我们纳入了2016年9月至2018年12月期间被诊断为符合检测板条件的肺癌的BC成年居民。使用机器学习方法,我们对接受多基因检测板测序的受试者与接受单基因检测的对照进行了1:1遗传算法匹配,以最大限度地平衡观察到的人口统计学和临床特征。匹配后,我们估计了平均三年生存时间和成本(从公共医疗支付者角度;2021年加元),并使用删失加权线性回归和非参数自助法计算了在传统支付意愿阈值下获得的生命年(LYG)的增量净货币效益(INMB)。
我们将858名符合检测板条件的晚期NSCLC患者与对照进行了匹配,实现了16个纳入协变量的平衡。多基因检测板测序的平均检测周转时间为18.6天,单基因检测为7.0天。匹配后,平均增量成本为3529加元(95%CI:-4268加元,10942加元),平均增量LYG为0.08(95%CI:-0.04,0.18)。在1000个自助样本中,14.5%的样本成本更低且生存率提高,78.6%的样本成本更高且生存率提高。在每生命年50000加元的阈值下,INMB为523加元(95%CI:-6256加元,7023加元),具有成本效益的概率为57.5%;在每生命年100000加元的阈值下,INMB为4575加元(95%CI:-5468加元,14064加元),具有成本效益的概率为84.0%。
使用基于人群的真实世界数据,我们发现基于检测板的检测为NSCLC的靶向治疗提供信息在较高阈值下具有成本效益的概率为中度到高度。
本研究得到了不列颠哥伦比亚基因组/加拿大基因组(G05CHS)和特里·福克斯研究所的支持。