Instituto Federal de Educacão, Ciência e Tecnologia do Rio Grande do Sul/IFRS, Rodovia RS-239, Km 68, 3505, 95700-000 Rolante, RS, Brazil.
Universidade Federal do Rio Grande do Sul/UFRGS, Centro Polar e Climático, Av. Bento Gonçalves, 9500, Prédio 43136, Salas 208 e 210, 91501-970 Porto Alegre, RS, Brazil.
An Acad Bras Cienc. 2024 Nov 22;96(suppl 2):e20240554. doi: 10.1590/0001-3765202420240554. eCollection 2024.
Sea ice is a critical component of the cryosphere and plays a role in the heat and moisture exchange processes between the ocean and atmosphere, thus regulating the global climate. With climate change, detailed monitoring of changes occurring in sea ice is necessary. Therefore, an analysis was conducted to evaluate the potential of using the Gray Level Co-occurrence Matrix (GLCM) texture analysis combined with the backscattering coefficient (σ°) of HH polarization in Sentinel-1A Synthetic Aperture Radar (SAR) images, interferometric imaging mode, for mapping sea ice in time series. Data processing was performed using cloud computing on the Google Earth Engine platform with routines written in JavaScript. To train the Random Forest (RF) classifier, samples of regions with open water and sea ice were obtained through visual interpretation of false-color SAR images from Sentinel-1B in the extra-wide swath imaging mode. The analysis demonstrated that training samples used in the RF classifier from a specific date can be applied to images from other dates within the freezing period, achieving accuracies ≥ 90% when using 64-bit grayscale quantization in GLCM combined with σ° data. However, when using only σ° data in the RF classifier, accuracies ≥ 93% were observed.
海冰是冰冻圈的重要组成部分,在海洋和大气之间的热量和水分交换过程中发挥作用,从而调节全球气候。随着气候变化,有必要对海冰发生的变化进行详细监测。因此,进行了一项分析,以评估使用灰度共生矩阵 (GLCM) 纹理分析结合 Sentinel-1A 合成孔径雷达 (SAR) 图像 HH 极化后向散射系数 (σ°) 的组合,对时间序列中海冰进行映射的潜力。使用 JavaScript 编写的例程在 Google Earth Engine 平台上进行了云计算数据处理。为了训练随机森林 (RF) 分类器,通过对 Sentinel-1B 超宽幅成像模式的假彩色 SAR 图像进行目视解释,获得了开阔水域和海冰的样本。分析表明,RF 分类器中特定日期的训练样本可应用于冻结期内的其他日期的图像,在 GLCM 结合 σ°数据的 64 位灰度量化中达到≥90%的精度。然而,当仅在 RF 分类器中使用 σ°数据时,观察到≥93%的精度。