Tiedemann Rochelle L, Hrit Joel, Du Qian, Wiseman Ashley K, Eden Hope E, Dickson Bradley M, Kong Xiangqian, Chomiak Alison A, Vaughan Robert M, Tibben Bailey M, Hebert Jakob M, David Yael, Zhou Wanding, Baylin Stephen B, Jones Peter A, Clark Susan J, Rothbart Scott B
Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA.
Epigenetics Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW 2010, Australia.
Nucleic Acids Res. 2024 Dec 11;52(22):13733-13756. doi: 10.1093/nar/gkae1105.
The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. The model posits that nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). However, the extent to which DNMT1 relies on ubiquitin signaling through UHRF1 in support of DNA methylation maintenance remains unclear. Here, with integrative epigenomic and biochemical analyses, we reveal that DNA methylation maintenance at low-density cytosine-guanine dinucleotides (CpGs) is particularly vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMDs), a methylation signature observed across human cancers. In contrast, UIM2 disruption completely abolishes the DNA methylation maintenance function of DNMT1 in a CpG density-independent manner. In the context of DNA methylation recovery following acute DNMT1 depletion, we further reveal a 'bookmarking' function for UHRF1 ubiquitin ligase activity in support of DNA re-methylation. Collectively, these studies show that DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process that is partially reliant on UHRF1 and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to PMD formation in cancers.
环指E3泛素连接酶UHRF1是一种已确定的DNA甲基化遗传辅助因子。该模型认为,通过组蛋白和DNA相互作用与核小体结合,可将UHRF1泛素连接酶活性导向组蛋白H3尾巴上的赖氨酸,通过泛素相互作用基序(UIM1和UIM2)为DNMT1创造结合位点。然而,DNMT1在多大程度上依赖于通过UHRF1的泛素信号传导来支持DNA甲基化维持仍不清楚。在这里,通过综合表观基因组学和生化分析,我们发现低密度胞嘧啶-鸟嘌呤二核苷酸(CpG)处的DNA甲基化维持特别容易受到UHRF1泛素连接酶活性和通过UIM1的DNMT泛素读取活性破坏的影响。以这种方式使低密度CpG低甲基化会诱导部分甲基化结构域(PMD)的形成,这是在人类癌症中观察到的一种甲基化特征。相比之下,UIM2的破坏以一种不依赖CpG密度的方式完全消除了DNMT1的DNA甲基化维持功能。在急性DNMT1耗竭后的DNA甲基化恢复背景下,我们进一步揭示了UHRF1泛素连接酶活性在支持DNA重新甲基化方面的“书签”功能。总的来说,这些研究表明,依赖DNMT1的DNA甲基化遗传是一个泛素调节的过程,部分依赖于UHRF1,并表明UHRF1-DNMT1泛素信号轴的破坏促成了癌症中PMD的形成。