Suppr超能文献

慢性缺氧对胶质母细胞瘤多形性对一线治疗的耐药性的被忽视的负担。

The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies.

机构信息

Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.

Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.

出版信息

BMC Biol. 2024 Nov 28;22(1):278. doi: 10.1186/s12915-024-02075-w.

Abstract

Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.

摘要

多形性胶质母细胞瘤(GBM)是最常见的成人原发性脑肿瘤。标准治疗方案包括最大限度的手术,然后进行放疗,并联合替莫唑胺(TMZ)化疗,此外还有辅助 TMZ。然而,GBM 在诊断后 1-2 年内的复发率仍然很高,这归因于多种因素的积累,包括 GBM 的异质性、基因组不稳定性、血管生成和慢性肿瘤缺氧。肿瘤缺氧激活了下游信号通路,使 GBM 适应新的缺氧环境,从而导致耐药和复发现象,尽管采用了多种方法来消灭肿瘤。因此,在这篇综述中,我们将重点关注慢性或局限性扩散缺氧在通过遗传和表观遗传修饰促进肿瘤持续存在方面的发展和意义。然后,我们将详细描述缺氧诱导的重要生物途径和机制的激活,这些途径和机制有助于 GBM 的耐药性。最后,我们将讨论一种基于蛋白质组学的方法,以鼓励根据缺氧特征进行个性化 GBM 治疗的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3c9/11603919/0b0a4bb9193d/12915_2024_2075_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验