Suppr超能文献

多代回交后代遗传贡献的分析预测。

Analytical prediction of genetic contribution across multiple recurrent backcrossing generations.

机构信息

Nature Source Improved Plants, 95 Brown St, Ithaca, NY, 14850, USA.

出版信息

Theor Appl Genet. 2024 Nov 30;137(12):279. doi: 10.1007/s00122-024-04774-y.

Abstract

We derive formulas for the residual donor genome content during trait introgression via recurrent backcrossing and use these formulas to predict (without simulation) residual donor genome content for five future generations. Trait introgression is a common method for introducing valuable genes or alleles into breeding populations and inbred cultivars. The particular breeding scheme is usually designed to maximize the genetic similarity of the converted lines to the recurrent parent while minimizing cost and time to recover the near isogenic lines. Key variables include the number of generations and crosses and how to apply genotyping and selection. One form of trait introgression, which is our focus, involves an initial cross of an elite, homozygous recurrent parent line with a non-recurrent, homozygous donor line. The descendants of this cross are backcrossed with the recurrent parent for several generation before self-pollination in the final generation to recover lines with the alleles of interest. In this paper, we derive analytical formulas that characterize the stochastic nature of residual donor genome content during this form of trait introgression. The development of these formulas expands the mathematical methods one can integrate into breeding design. In particular, we show we can use our formulas in a novel mathematical program to allocate resources to optimize the reduction of residual donor genome content.

摘要

我们推导出了通过反复回交进行性状导入时残留供体基因组含量的公式,并使用这些公式来预测(无需模拟)未来五代的残留供体基因组含量。性状导入是将有价值的基因或等位基因引入育种群体和自交系的常用方法。特定的育种方案通常旨在最大限度地提高转化系与轮回亲本的遗传相似性,同时最大限度地降低恢复近等基因系的成本和时间。关键变量包括世代和杂交的数量,以及如何应用基因分型和选择。我们关注的性状导入的一种形式涉及与非轮回的纯合供体系的初始杂交,然后与轮回亲本进行几次回交,最后一代自交以恢复感兴趣的等位基因的系。在本文中,我们推导出了描述这种性状导入形式中残留供体基因组含量的随机性质的分析公式。这些公式的发展扩展了可以整合到育种设计中的数学方法。特别是,我们展示了如何在一个新的数学程序中使用我们的公式来分配资源,以优化残留供体基因组含量的减少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验