Suppr超能文献

机会博弈中信息的价格:一种统计物理学方法。

Price of information in games of chance: A statistical physics approach.

作者信息

Gamberi Luca, Annibale Alessia, Vivo Pierpaolo

机构信息

Quantitative and Digital Law Lab, Department of Mathematics, King's College London, Strand, WC2R 2LS London, United Kingdom.

出版信息

Phys Rev Res. 2024 Sep 4;6(3). doi: 10.1103/PhysRevResearch.6.033250.

Abstract

Information in the form of , which can be stored and transferred between users, can be viewed as an intangible commodity, which can be traded in exchange for money. Determining the fair price at which a string of data should be traded is an important and open problem in many settings. In this work we develop a statistical physics framework that allows one to determine analytically the fair price of information exchanged between players in a game of chance. For definiteness, we consider a game where players bet on the binary outcome of a stochastic process and share the entry fees pot if successful. We assume that one player holds information about past outcomes of the game, which they may either use exclusively to improve their betting strategy or offer to sell to another player. We find a sharp transition as the number of players is tuned across a critical value, between a phase where the transaction is always profitable for the seller and one where it may not be. In both phases, different regimes are possible, depending on the "quality" of information being put up for sale: we observe regimes, where both parties collude effectively to rig the game in their favor, regimes, where the transaction is unappealing to the data holder as it overly favors a competitor for scarce resources, and even regimes, where an exploitative data holder could be giving away bad-quality data to undercut a competitor. Our analytical framework can be generalized to more complex settings and constitutes a flexible tool to address the rich and timely problem of pricing information in games of chance.

摘要

以 形式存在的信息,能够在用户之间存储和传输,可以被视为一种无形商品,它能够进行交易以换取金钱。确定一串数据应该交易的公平价格,在许多情况下都是一个重要且尚未解决的问题。在这项工作中,我们开发了一个统计物理框架,该框架允许人们通过分析确定在一个机会博弈中参与者之间交换的信息的公平价格。为明确起见,我们考虑这样一个博弈,其中 参与者就一个随机过程的二元结果进行投注,如果成功则分享入场费池。我们假设一个参与者掌握关于该博弈过去结果的信息,他们既可以仅用此信息来改进自己的投注策略,也可以将其提供给另一个参与者出售。我们发现,当参与者数量 调整到一个临界值时会出现急剧转变,在一个阶段,交易对卖家总是有利可图的,而在另一个阶段则可能并非如此。在这两个阶段,根据所出售信息的“质量”,可能会出现不同的情况:我们观察到 种情况,即双方有效地勾结起来操纵博弈以利于自己; 种情况,即交易对数据持有者没有吸引力,因为它过度有利于竞争对手获取稀缺资源;甚至 种情况,即一个剥削性的数据持有者可能会提供劣质数据以削弱竞争对手。我们的分析框架可以推广到更复杂的情况,并构成一个灵活的工具,以解决机会博弈中丰富且及时的信息定价问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1efe/7616869/a11c31bef456/EMS200757-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验