Gahlot Kushagra, di Mario Lorenzo, Bosma Rixt, Loi Maria A, Protesescu Loredana
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.
Chem Mater. 2024 Nov 15;36(22):11227-11235. doi: 10.1021/acs.chemmater.4c02261. eCollection 2024 Nov 26.
Tin halide perovskites are promising for optoelectronics, although their sensitivity to ambient conditions due to Sn(II) oxidation presents a challenge. Encapsulation techniques can mitigate degradation and facilitate advanced studies of the intrinsic properties. To study and improve the ambient stability of CsSnBr and CsSnI nanocrystal (NC) thin films, we explored various encapsulation methods: organic, inorganic, and hybrid. We employed three methods for organic encapsulation: co-deposition with NCs, co-deposition with an additional top layer, and polymerization with NCs. We synthesized thin layers of alumina by using atomic layer deposition for inorganic encapsulation. While individual methods offered marginal improvements, the hybrid approach provided the best results. By employing a hybrid heterostructured thin-film strategy, with the NC layer covered by a thin layer of poly(methyl methacrylate) followed by a 40 nm alumina layer, the stability in air was improved from a few seconds to a record period of 15 days, a crucial advancement for the further exploration of tin halide perovskites.
卤化锡钙钛矿在光电子学领域具有广阔前景,不过由于Sn(II)氧化导致其对环境条件敏感,这带来了挑战。封装技术可以减轻降解并有助于对其本征特性进行深入研究。为了研究和提高CsSnBr和CsSnI纳米晶体(NC)薄膜的环境稳定性,我们探索了各种封装方法:有机封装、无机封装和混合封装。我们采用了三种有机封装方法:与NC共沉积、与额外的顶层共沉积以及与NC聚合。我们通过原子层沉积合成氧化铝薄层用于无机封装。虽然单独的方法只带来了些许改善,但混合方法取得了最佳效果。通过采用混合异质结构薄膜策略,在NC层上覆盖一层聚甲基丙烯酸甲酯薄层,然后再覆盖一层40 nm的氧化铝层,空气中的稳定性从几秒提高到了创纪录的15天,这对于卤化锡钙钛矿的进一步探索而言是一项关键进展。