Nikzad Nastaran, Punchihewa Buwanila T, Minda Vidit, Gutheil William G, Rafiee Mohammad
Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, United States.
Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64108, United States.
Anal Chem. 2024 Dec 17;96(50):20026-20032. doi: 10.1021/acs.analchem.4c04712. Epub 2024 Dec 3.
Electrochemistry offers an effective means of mimicking enzymatic metabolic pathways, particularly the oxidative pathways catalyzed by the cytochrome P450 superfamily. The electrochemical generation and identification of metabolites are time-sensitive, necessitating adjustable cell designs for an accurate mechanistic interpretation. We present a thin-layer electrode (TLE) that addresses the needs of both the analytical and synthetic electrochemical generation of drug metabolites. The TLE's ability to conduct experiments on a minute-to-hour time scale allows for detailed observation of reaction mechanisms for metabolites not easily identified by traditional methods. The utility of the TLE for drug metabolites was benchmarked for electrochemical oxidation of acetaminophen, acebutolol, and 2-acetyl-4-butyramidophenol, known to produce quinone imine metabolites, i.e., NAPQI, upon oxidation. When combined with a microelectrode (μE), the TLE enables probing of the concentration profiles for metabolic oxidation of these drugs. The micromole scale and pipette-type structure of the TLE facilitate comprehensive structural elucidation of intermediates and products using chromatographic and spectroscopic techniques.
电化学提供了一种模拟酶促代谢途径的有效方法,特别是由细胞色素P450超家族催化的氧化途径。代谢物的电化学生成和鉴定对时间敏感,因此需要可调节的电池设计以进行准确的机理解释。我们展示了一种薄层电极(TLE),它满足了药物代谢物分析和合成电化学生成的需求。TLE在分钟到小时的时间尺度上进行实验的能力,使得能够详细观察传统方法不易鉴定的代谢物的反应机理。TLE对药物代谢物的效用通过对乙酰氨基酚、醋丁洛尔和2-乙酰-4-丁酰胺基苯酚的电化学氧化进行了基准测试,已知这些物质在氧化时会产生醌亚胺代谢物,即NAPQI。当与微电极(μE)结合时,TLE能够探测这些药物代谢氧化的浓度分布。TLE的微摩尔规模和移液管型结构有助于使用色谱和光谱技术对中间体和产物进行全面的结构解析。