Nan Yiling, Baral Prabin, Orr Asuka A, Michel Haley M, Lemkul Justin A, MacKerell Alexander D
University of Maryland Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States.
Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061-0131, United States.
J Phys Chem B. 2024 Dec 12;128(49):12078-12091. doi: 10.1021/acs.jpcb.4c06354. Epub 2024 Dec 3.
An accurate force field (FF) is the foundation of reliable results from molecular dynamics (MD) simulations. In our recently published work, we developed a protocol to generate atom pair-specific Lennard-Jones (known as NBFIX in CHARMM) and through-space Thole dipole screening (NBTHOLE) parameters in the context of the Drude polarizable FF based on readily accessible quantum mechanical (QM) data to fit condensed phase experimental thermodynamic benchmarks, including the osmotic pressure, diffusion coefficient, ionic conductivity, and solvation free energy, when available. In the present work, the developed protocol is applied to generate NBFIX and NBTHOLE parameters for interactions between monatomic ions (specifically Li, Na, K, Rb, Cs, and Cl) and common functional groups found in proteins and nucleic acids. The parameters generated for each ion-functional group pair were then applied to the corresponding functional groups within proteins or nucleic acids followed by MD simulations to analyze the distribution of ions around these biomolecules. The modified FF successfully addresses the issue of overbinding observed in a previous iteration of the Drude FF. Quantitatively, the model accurately reproduces the effective charge of proteins and demonstrates a level of charge neutralization for a double-helix B-DNA in good agreement with the counterion condensation theory. Additionally, simulations involving ion competition correlate well with experimental results, following the trend Li > Na ≈ K > Rb. These results validate the refined model for group 1 ion-biomolecule interactions that will facilitate the application of the polarizable Drude FF in systems in which group 1 ions play an important role.
精确的力场(FF)是分子动力学(MD)模拟获得可靠结果的基础。在我们最近发表的工作中,我们开发了一种协议,在基于易获取的量子力学(QM)数据的德鲁德极化力场背景下,生成原子对特定的 Lennard-Jones(在 CHARMM 中称为 NBFIX)和空间穿越的索勒偶极筛选(NBTHOLE)参数,以拟合凝聚相实验热力学基准,包括渗透压、扩散系数、离子电导率和溶剂化自由能(若有)。在本工作中,所开发的协议被应用于生成单原子离子(具体为 Li、Na、K、Rb、Cs 和 Cl)与蛋白质和核酸中常见官能团之间相互作用的 NBFIX 和 NBTHOLE 参数。然后将为每个离子 - 官能团对生成的参数应用于蛋白质或核酸内的相应官能团,随后进行 MD 模拟以分析这些生物分子周围离子的分布。改进后的力场成功解决了在德鲁德力场先前版本中观察到的过度结合问题。定量地说,该模型准确地再现了蛋白质的有效电荷,并证明了双螺旋 B - DNA 的电荷中和水平与反离子凝聚理论高度一致。此外,涉及离子竞争的模拟与实验结果相关性良好,遵循 Li > Na ≈ K > Rb 的趋势。这些结果验证了用于第 1 族离子 - 生物分子相互作用的改进模型,这将有助于极化德鲁德力场在第 1 族离子起重要作用的系统中的应用。