Suppr超能文献

寻找一族耗散二维映射的临界指数和参数空间。

Finding critical exponents and parameter space for a family of dissipative two-dimensional mappings.

作者信息

da Costa Fábio H, de Almeida Mayla A M, Medrano-T Rene O, Leonel Edson D, de Oliveira Juliano A

机构信息

Departamento de Física, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP), Câmpus de Rio Claro, Av. 24A, 1515, 13506-900 Rio Claro, SP, Brazil.

Departamento de Física, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Câmpus de Diadema, R. São Nicolau, 210, 09913-030 Diadema, SP, Brazil.

出版信息

Chaos. 2024 Dec 1;34(12). doi: 10.1063/5.0234491.

Abstract

A family of dissipative two-dimensional nonlinear mappings is considered. The mapping is described by the angle and action variables and parameterized by ε controlling nonlinearity, δ controlling the amount of dissipation, and an exponent γ is a dynamic free parameter that enables a connection with various distinct dynamic systems. The Lyapunov exponents are obtained for different values of the control parameters to characterize the chaotic attractors. We investigated the time evolution for the stationary state at period-doubling bifurcations. The convergence to the stationary state is made using a robust homogeneous and generalized function at the bifurcation parameter, which leads us to obtain a set of universal critical exponents. The parameter space of the mapping is investigated, and tangent, period-doubling, pitchfork, and cusp bifurcations are found, and a street of saddle-area and spring-area structures is observed.

摘要

考虑了一族耗散二维非线性映射。该映射由角度和作用变量描述,并由控制非线性的ε、控制耗散量的δ参数化,指数γ是一个动态自由参数,它能与各种不同的动态系统建立联系。针对控制参数的不同值获得李雅普诺夫指数,以表征混沌吸引子。我们研究了倍周期分岔处稳态的时间演化。在分岔参数处使用鲁棒的齐次广义函数实现向稳态的收敛,这使我们得到了一组通用临界指数。研究了映射的参数空间,发现了切线、倍周期、叉形和尖点分岔,并观察到一条鞍区和弹簧区结构的通道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验