Suppr超能文献

BCM1-EGY1模块平衡叶绿素的生物合成与分解,以实现陆地植物中的叶绿素稳态。

The BCM1-EGY1 module balances chlorophyll biosynthesis and breakdown to confer chlorophyll homeostasis in land plants.

作者信息

Fu Dali, Zhou Hanlin, Grimm Bernhard, Wang Peng

机构信息

School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China.

Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstrasse13, Building 12, 10115 Berlin, Germany.

出版信息

Mol Plant. 2025 Jan 6;18(1):76-94. doi: 10.1016/j.molp.2024.11.016. Epub 2024 Dec 2.

Abstract

Chlorophyll metabolism has evolved during plant evolution. The strictly light-dependent nature of chlorophyll biosynthesis found in angiosperms requires tight coordination of chlorophyll biosynthesis and breakdown to achieve chlorophyll homeostasis. However, the specific control mechanisms remain largely unclear. Here, we demonstrate that the scaffold protein BALANCE OF CHLOROPHYLL METABOLISM1 (BCM1) has co-evolved with the carboxy-terminal domains of specific enzymes involved in chlorophyll biosynthesis and breakdown, including GENOMES UNCOUPLED 4 (GUN4) and Mg-dechelatase 1 (SGR1). We found that the land plant-specific interaction of BCM1 with the carboxy-terminal domains of GUN4 and SGR1 is indispensable for concurrent stimulation of chlorophyll biosynthesis and suppression of chlorophyll breakdown. The land plant-specific carboxy-terminal domain is essential for the membrane docking and turnover of GUN4, whereas it is key for proteolysis of SGR1. More importantly, we identified the metallopeptidase Gravitropism-deficient and Yellow-green 1 (EGY1) as the proteolytic machinery responsible for BCM1-mediated proteolysis of SGR1. In summary, this study reveals the BCM1-EGY1 module has evolved to maintain chlorophyll homeostasis by the post-translational control of the balance between chlorophyll biosynthesis and breakdown. This mechanism thus represents an evolutionary response to the metabolic demands imposed on plants in terrestrial environments.

摘要

叶绿素代谢在植物进化过程中不断演变。被子植物中叶绿素生物合成严格依赖光照的特性要求叶绿素生物合成与降解紧密协调,以实现叶绿素稳态。然而,具体的调控机制在很大程度上仍不清楚。在此,我们证明了支架蛋白叶绿素代谢平衡1(BCM1)与参与叶绿素生物合成和降解的特定酶的羧基末端结构域共同进化,这些酶包括解偶联蛋白4(GUN4)和镁脱螯合酶1(SGR1)。我们发现,陆地植物中BCM1与GUN4和SGR1羧基末端结构域的特异性相互作用对于同时刺激叶绿素生物合成和抑制叶绿素降解是不可或缺的。陆地植物特有的羧基末端结构域对于GUN4的膜对接和周转至关重要,而对于SGR1的蛋白水解则是关键。更重要的是,我们确定金属肽酶重力缺陷和黄绿1(EGY1)是负责BCM1介导的SGR1蛋白水解的蛋白水解机制。总之,本研究揭示了BCM1 - EGY1模块通过对叶绿素生物合成和降解之间平衡的翻译后控制来维持叶绿素稳态。因此,这种机制代表了对陆地环境中植物代谢需求的一种进化响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验