Suppr超能文献

一项评估群体药代动力学模型选择对新生儿万古霉素初始给药建议影响的模拟研究。

A simulation study to assess the influence of population pharmacokinetic model selection on initial dosing recommendations of vancomycin in neonates.

作者信息

El Hassani Mehdi, Blouin Mathieu, Marsot Amélie

机构信息

Faculté de pharmacie, Université de Montréal, Canada.

Laboratoire de suivi thérapeutique pharmacologique et pharmacocinétique, Faculté de pharmacie, Université de Montréal, Canada.

出版信息

Br J Clin Pharmacol. 2025 Apr;91(4):1223-1232. doi: 10.1111/bcp.16345. Epub 2024 Dec 3.

Abstract

AIMS

The accuracy of model-informed precision dosing largely depends on selecting the most appropriate population pharmacokinetic (popPK) model from many available options. This study aims to evaluate the concordance of optimal initial simulated doses among various vancomycin popPK models developed in neonates and to explore the role of predictive performance in explaining the variability in probability of target attainment (PTA).

METHODS

A virtual neonatal patient population was created and 26 previously externally evaluated vancomycin popPK models were used to simulate 5 different dosing regimens. For each simulated scenario, the area under the concentration-time curve and PTA were calculated to assess the agreement on optimal initial doses across the 26 models. A multiple regression was performed to explore the impact of the models' predictive performance on PTA.

RESULTS

For most models (15/26), there was an agreement on the optimal dosing regimen. The highest PTA being achieved by the model with the best a priori predictive performance. The multiple regression model significantly predicted mean ln-transformed PTA, with F(2, 23) = 5.406 and P = .010, yielding an adjusted R of .21. PTA was significantly influenced by imprecision (P = .048) but not bias (P = .469).

CONCLUSION

In conclusion, our study demonstrated that, despite the variability in bias and imprecision, there was a consensus on the initial optimal doses for the majority of models; however, models with superior a priori predictive performance yielded higher PTA values. Bias and imprecision alone only seem to predict a small proportion of the variability in PTA, with imprecision having a more pronounced effect.

摘要

目的

模型引导的精准给药的准确性很大程度上取决于从众多可用选项中选择最合适的群体药代动力学(popPK)模型。本研究旨在评估在新生儿中开发的各种万古霉素popPK模型之间最佳初始模拟剂量的一致性,并探讨预测性能在解释目标达成概率(PTA)变异性方面的作用。

方法

创建了一个虚拟的新生儿患者群体,并使用26个先前经过外部评估的万古霉素popPK模型来模拟5种不同的给药方案。对于每个模拟场景,计算浓度-时间曲线下面积和PTA,以评估26个模型在最佳初始剂量上的一致性。进行多元回归以探讨模型预测性能对PTA的影响。

结果

对于大多数模型(15/26),在最佳给药方案上存在一致性。先验预测性能最佳的模型实现了最高的PTA。多元回归模型显著预测了平均自然对数转换后的PTA,F(2, 23) = 5.406,P = 0.010,调整后的R为0.21。PTA受不精密度的显著影响(P = 0.048),但不受偏差的影响(P = 0.469)。

结论

总之,我们的研究表明,尽管在偏差和不精密度方面存在变异性,但大多数模型在初始最佳剂量上达成了共识;然而,具有卓越先验预测性能的模型产生了更高的PTA值。单独的偏差和不精密度似乎仅能预测PTA变异性的一小部分,其中不精密度的影响更为显著。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验