Otsuji Taiichi, Boubanga-Tombet Stephane Albon, Satou Akira, Yadav Deepika, Fukidome Hirokazu, Watanabe Takayuki, Suemitsu Tetsuya, Dubinov Alexander A, Popov Vyacheslav V, Knap Wojciech, Kachorovskii Valentin, Narahara Koichi, Ryzhii Maxim, Mitin Vladimir, Shur Michael S, Ryzhii Victor
Research Institute of Electrical Communication, Tohoku University, Sendai 9808577, Japan.
Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai 9808572, Japan.
Nanophotonics. 2022 Feb 2;11(9):1677-1696. doi: 10.1515/nanoph-2021-0651. eCollection 2022 Apr.
This paper reviews recent advances in the research and development of graphene-based plasmonic metamaterials for terahertz (THz) laser transistors. The authors' theoretical discovery on THz laser transistors in 2007 was realized as a distributed-feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) in 2018, demonstrating ∼0.1 µW single-mode emission at 5.2 THz and ∼80 µW amplified spontaneous 1-7.6 THz emission at 100 K. To realize room-temperature, dry-cell-battery operating intense THz lasing with fast direct modulation, various approaches based on graphene plasmonic metamaterials are investigated and introduced as real device implementations, including (i) replacement of the laser photonic cavity with plasmonic cavity enormously improving the THz photon field confinement with larger gain overlapping, (ii) introduction of THz amplification of stimulated emission via current-driven graphene Dirac plasmons (GDPs), and (iii) controlling the parity and time-reversal symmetry of GDPs enabling ultrafast direct gain-switch modulation. Possible real device structures and design constraints are discussed and addressed toward coherent light sources applicable to future 6G- and 7G-class THz wireless communication systems.
本文综述了用于太赫兹(THz)激光晶体管的基于石墨烯的等离子体超材料的研发进展。作者在2007年关于太赫兹激光晶体管的理论发现于2018年实现为分布式反馈双栅极石墨烯沟道场效应晶体管(DFB-DG-GFET),在100K温度下展示了5.2太赫兹处约0.1微瓦的单模发射以及1 - 7.6太赫兹处约80微瓦的放大自发发射。为了实现室温、干电池供电且具有快速直接调制的高强度太赫兹激光发射,研究并介绍了基于石墨烯等离子体超材料的各种方法作为实际器件实现方式,包括:(i)用等离子体腔替代激光光子腔,极大地改善太赫兹光子场限制并具有更大的增益重叠;(ii)通过电流驱动的石墨烯狄拉克等离子体(GDPs)引入受激发射的太赫兹放大;(iii)控制GDPs的宇称和时间反演对称性以实现超快直接增益开关调制。针对适用于未来6G和7G级太赫兹无线通信系统的相干光源讨论并解决了可能的实际器件结构和设计限制。