MahmoudiYamchi Fariba, Abbasi Mahdi, Atri Faezeh, Ahmadi Elham
Dental Research Center, Dentistry Research Institute, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Dental Research Center, Dentistry Research Institute, Department of Operative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
Int J Dent. 2024 Nov 27;2024:6753069. doi: 10.1155/ijod/6753069. eCollection 2024.
The impact of the deep margin elevation (DME) technique and its associated materials on the stress distribution in ceramic endocrowns remains to be fully understood. This finite element analysis (FEA) aimed to assess the effects of flowable composite and resin-modified glass ionomer (RMGI) as DME materials on the maximum Von Mises stress (VMS) values and overall stress distribution within ceramic endocrowns and the surrounding tooth structure. A mandibular molar featuring a class II mesio occlusal (MO) cavity with the gingival margin of the mesial cavity positioned 2 mm below the cementoenamel junction (CEJ) was prepared and scanned using a Medit i500 scanner. The digital file was then transferred to computer-aided design (CAD) software to create the models. The study generated four scenarios: an intact tooth model (model of intact tooth (MIT)), a prepared tooth model without a DME layer (model without DME (MWD)), a model with a 2 mm DME layer using composite material (model with DME of composite (MDC)), and a model employing RMGI (model with DME of RMGI (MDR)). Stress distribution under axial loads was evaluated based on the Von Mises criterion. The MIT model demonstrated the highest stress concentration at the CEJ region yet exhibited lower stress levels than others. The MWD model showed the highest stress levels. No significant differences in stress distribution patterns were observed between the MDR and MDC models. All models displayed similar stress distributions in the bone. Regardless of the material used, incorporating a DME layer in cavities extending below the CEJ is advisable to achieve uniform stress distribution. Minimizing tooth preparation and preserving tooth structure are recommended. Employing a DME layer in cavities with margins below the CEJ is beneficial for reducing stress, irrespective of the material choice.
深层边缘提升(DME)技术及其相关材料对陶瓷内冠应力分布的影响仍有待充分了解。本有限元分析(FEA)旨在评估可流动复合树脂和树脂改性玻璃离子水门汀(RMGI)作为DME材料对陶瓷内冠及周围牙体结构内的最大冯·米塞斯应力(VMS)值和整体应力分布的影响。制备了一个下颌磨牙,其具有II类近中咬合(MO)洞,近中洞的龈缘位于牙骨质釉质界(CEJ)下方2mm处,并使用Medit i500扫描仪进行扫描。然后将数字文件传输到计算机辅助设计(CAD)软件中以创建模型。本研究产生了四种情况:完整牙齿模型(完整牙齿模型(MIT))、无DME层的预备牙齿模型(无DME模型(MWD))、使用复合材料的2mm DME层模型(复合材料DME模型(MDC))和采用RMGI的模型(RMGI DME模型(MDR))。基于冯·米塞斯准则评估轴向载荷下的应力分布。MIT模型在CEJ区域显示出最高的应力集中,但应力水平低于其他模型。MWD模型显示出最高的应力水平。在MDR和MDC模型之间未观察到应力分布模式的显著差异。所有模型在骨中的应力分布相似。无论使用何种材料,建议在延伸至CEJ下方的洞中加入DME层以实现均匀的应力分布。建议尽量减少牙体预备并保留牙体结构。在边缘位于CEJ下方的洞中使用DME层有利于降低应力,而与材料选择无关。