Błażytko Alfred, Rams-Baron Marzena, Książek Maria, Kusz Joachim, Matussek Marek, Grelska Joanna, Paluch Marian
August Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.
Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
J Phys Chem A. 2024 Dec 19;128(50):10758-10765. doi: 10.1021/acs.jpca.4c04964. Epub 2024 Dec 5.
We used dielectric spectroscopy to uncover the rotational dynamics of the fluorophenyl rotor in different polymorphs of two amphidynamic crystals with identical sizable cores. The rotor solid-state dynamics were investigated in various crystalline environments. We did not change the chemical structure of the crystal itself, but while maintaining the same atomic composition, we changed the arrangement of atoms in space by taking advantage of crystal polymorphism, providing an alternative approach to one based on searching for new, chemically different entities with desirable functionality. We demonstrated that via polymorph variation, we can efficiently improve rotor solid-state performance and reduce the rotational barrier height by 30%. Our findings advance the understanding of polymorph engineering as a prospective trend in amphidynamic crystal technology, which uses the phenomenon of crystal polymorphism to design crystals displaying applicable internal rotational dynamics.
我们使用介电谱来揭示具有相同大小核心的两种两性动态晶体不同多晶型物中氟苯基转子的旋转动力学。在各种晶体环境中研究了转子的固态动力学。我们没有改变晶体本身的化学结构,而是在保持相同原子组成的同时,利用晶体多晶型性改变了原子在空间中的排列,提供了一种不同于基于寻找具有所需功能的新的、化学性质不同的实体的方法。我们证明,通过多晶型变化,我们可以有效地改善转子的固态性能,并将旋转势垒高度降低30%。我们的发现推动了对多晶型工程的理解,这是两性动态晶体技术中的一个前瞻性趋势,该技术利用晶体多晶型现象来设计具有适用内部旋转动力学的晶体。