Espinal Abreu Valerie, Barnes Rachel, Borra Vishnupriya, Schurdak Jennifer, Perez-Tilve Diego
Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA.
Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, USA.
Mol Metab. 2025 Jan;91:102079. doi: 10.1016/j.molmet.2024.102079. Epub 2024 Dec 4.
The control of energy balance involves neural circuits in the central nervous system, including AGRP neurons in the arcuate nucleus of the hypothalamus (ARC). AGRP neurons are crucial for energy balance and their increased activity during fasting is critical to promote feeding behavior. The activity of these neurons is influenced by multiple signals including those acting on G-protein coupled receptors (GPCR) activating different intracellular signaling pathways. We sought to determine whether discrete G-protein mediated signaling in AGRP neurons, promotes differential regulation of feeding and whole-body glucose homeostasis.
To test the contribution of Gαq/11 or Gαs signaling, we developed congenital mouse lines expressing the different DREADD receptors (i.e., hM3q and rM3s), in AGRP neurons. Then we elicited chemogenetic activation of AGRP neurons in these mice during the postprandial state to determine the impact on feeding and glucose homeostasis.
Activation of AGRP neurons via hM3q and rM3s promoted hyperphagia. In contrast, only hM3q activation of AGRP neurons of the hypothalamic arcuate nucleus during the postprandial state enhanced whole-body glucose disposal by reducing sympathetic nervous system activity to the pancreas and liver, promoting glucose-stimulated insulin secretion, glycogen deposition and improving glucose tolerance.
These data indicate that AGRP neurons regulate food intake and glucose homeostasis through distinct GPCR-dependent signaling pathways and suggest that the transient increase in AGRP neuron activity may contribute to the beneficial effects of fasting on glycemic control.
能量平衡的控制涉及中枢神经系统中的神经回路,包括下丘脑弓状核(ARC)中的AgRP神经元。AgRP神经元对能量平衡至关重要,其在禁食期间活性增加对于促进摄食行为至关重要。这些神经元的活性受多种信号影响,包括作用于激活不同细胞内信号通路的G蛋白偶联受体(GPCR)的信号。我们试图确定AgRP神经元中离散的G蛋白介导的信号是否促进对摄食和全身葡萄糖稳态的差异调节。
为了测试Gαq/11或Gαs信号的作用,我们构建了在AgRP神经元中表达不同DREADD受体(即hM3q和rM3s)的先天性小鼠品系。然后我们在餐后状态下对这些小鼠的AgRP神经元进行化学遗传激活,以确定对摄食和葡萄糖稳态的影响。
通过hM3q和rM3s激活AgRP神经元会促进食欲亢进。相比之下,仅在餐后状态下通过hM3q激活下丘脑弓状核的AgRP神经元,可通过降低对胰腺和肝脏的交感神经系统活性、促进葡萄糖刺激的胰岛素分泌、糖原沉积并改善葡萄糖耐量,增强全身葡萄糖处置。
这些数据表明,AgRP神经元通过不同的GPCR依赖性信号通路调节食物摄入和葡萄糖稳态,并表明AgRP神经元活性的短暂增加可能有助于禁食对血糖控制的有益作用。