Ediriweera Gayathri R, Sivaram Amal J, Cowin Gary, Brown Mikayla L, McAlary Luke, Lum Jeremy S, Fletcher Nicholas L, Robinson Liam, Simpson Joshua D, Chen Liyu, Wasielewska Joanna M, Byrne Ella, Finnie John W, Manavis Jim, White Anthony R, Yerbury Justin J, Thurecht Kristofer J, Vine Kara L
Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
Centre for Advanced Imaging and Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; National Imaging Facility, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia.
J Control Release. 2025 Feb 10;378:221-235. doi: 10.1016/j.jconrel.2024.11.074. Epub 2024 Dec 13.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease with extremely limited therapeutic options. One key pathological feature of ALS is the abnormal accumulation of misfolded proteins within motor neurons. Hence, reducing the burden of misfolded protein has emerged as a promising therapeutic approach. Antisense oligonucleotides (ASOs) have the potential to effectively silence proteins with gain-of-function mutations, such as superoxide dismutase 1 (SOD1). However, ASO delivery to the central nervous system (CNS) is hindered by poor blood-brain barrier (BBB) penetration and the invasiveness of intrathecal administration. In the current study, we demonstrate effective systemic delivery of a next-generation SOD1 ASO (Tofersen) into the brain of wildtype and G93A-SOD1 transgenic C57BL/6 mice using calcium phosphate lipid nanoparticles (CaP lipid NPs). We show that transcranial focused ultrasound (FUS) with intravenously administered microbubbles can significantly enhance ASO-loaded nanoparticle delivery into the mouse brain. Magnetic resonance imaging (MRI) and immunohistological analysis showed reduced SOD1 expression in the FUS-exposed brain regions and increased motor neuron count in the spinal cord of treated mice suggesting decreased motor neuron degeneration. Importantly, the BBB opening was transient without evidence of structural changes, neuroinflammation or damage to the brain tissue, indicating that the treatment is well tolerated. Overall, our results highlight FUS-assisted nanoparticle delivery of ASOs as a promising non-invasive therapeutic strategy for the treatment of ALS and CNS diseases more broadly.
肌萎缩侧索硬化症(ALS)是一种极具破坏性的神经退行性疾病,治疗选择极为有限。ALS的一个关键病理特征是运动神经元内错误折叠蛋白的异常积累。因此,减轻错误折叠蛋白的负担已成为一种有前景的治疗方法。反义寡核苷酸(ASO)有潜力有效沉默具有功能获得性突变的蛋白,如超氧化物歧化酶1(SOD1)。然而,血脑屏障(BBB)穿透性差以及鞘内给药的侵入性阻碍了ASO向中枢神经系统(CNS)的递送。在本研究中,我们证明了使用磷酸钙脂质纳米颗粒(CaP脂质纳米粒)可将下一代SOD1 ASO(托弗生)有效地全身递送至野生型和G93A - SOD1转基因C57BL / 6小鼠的大脑。我们表明,经静脉注射微泡的经颅聚焦超声(FUS)可显著增强载有ASO的纳米颗粒向小鼠大脑的递送。磁共振成像(MRI)和免疫组织学分析显示,在接受FUS治疗的脑区中SOD1表达降低,且治疗小鼠脊髓中的运动神经元数量增加,提示运动神经元变性减少。重要的是,血脑屏障开放是短暂的,没有结构变化、神经炎症或脑组织损伤的证据,表明该治疗耐受性良好。总体而言,我们的结果突出了FUS辅助的ASO纳米颗粒递送作为一种有前景的非侵入性治疗策略,可更广泛地用于治疗ALS和中枢神经系统疾病。