Hervieu Laura, Groo Anne-Claire, Bellien Jérémy, Guerrot Dominique, Malzert-Fréon Aurélie
Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France; Université de Rouen Normandie, INSERM UMR1096, Normandie Univ, 76000 Rouen, France.
Université de Caen Normandie, CERMN UR4258, Normandie Univ, 14000 Caen, France.
Pharmacol Ther. 2025 Feb;266:108773. doi: 10.1016/j.pharmthera.2024.108773. Epub 2024 Dec 6.
The gastrointestinal tract (GIT) plays a pivotal role in the absorption of orally administered drugs, with the small intestine serving as the primary site due to its extensive surface area and specialized cell types, including enterocytes and M cells. After oral administration, drugs are generally transported via the portal vein to the liver, where they undergo first-pass metabolism. This process involves various enzymatic reactions, including glucuronidation, facilitated by uridine diphosphate-glucuronosyltransferase (UGT), a major phase 2 reaction in mammalian metabolism. UGTs conjugate glucuronic acid to a wide array of endogenous and exogenous substrates, enhancing their solubility and excretion, but significantly affecting the bioavailability and therapeutic efficacy of drugs. UGT enzymes are ubiquitously distributed across tissues, prominently in the liver, but also in the GIT, kidneys, brain, and other organs where they play crucial roles in xenobiotic metabolism. Species-specific differences in UGT expression and activity impact the selection of animal models for pharmacological studies. Various experimental models - ranging from computational simulations (in silico) to laboratory experiments (in vitro) and animal studies (in vivo) - are employed throughout drug discovery and development to evaluate drug metabolism, including UGT activity. Effective strategies to counter pre-systemic metabolism are critical for improving drug bioavailability. This review explores several approaches including prodrugs, co-administration of specific molecules or use of inhibiting excipients in formulations. Strategies incorporating these excipients in nanoformulations demonstrate notable increases in drug absorption and bioavailability. This review highlights the importance of targeted delivery systems and excipient selection in overcoming metabolic barriers, aiming to optimize drug efficacy and patient outcomes.
胃肠道(GIT)在口服药物的吸收中起着关键作用,由于小肠具有广泛的表面积和包括肠上皮细胞和M细胞在内的特殊细胞类型,因此小肠是主要的吸收部位。口服给药后,药物通常通过门静脉转运至肝脏,在肝脏中进行首过代谢。这个过程涉及各种酶促反应,包括由尿苷二磷酸葡萄糖醛酸转移酶(UGT)促进的葡萄糖醛酸化反应,这是哺乳动物代谢中的一种主要的Ⅱ相反应。UGT将葡萄糖醛酸与多种内源性和外源性底物结合,提高它们的溶解度和排泄率,但会显著影响药物的生物利用度和治疗效果。UGT酶广泛分布于各种组织中,在肝脏中含量尤其丰富,但在胃肠道、肾脏、大脑和其他器官中也有分布,它们在这些器官的异源物质代谢中发挥着关键作用。UGT表达和活性的种属差异会影响药理学研究中动物模型的选择。在药物发现和开发的整个过程中,会采用各种实验模型——从计算模拟(计算机模拟)到实验室实验(体外实验)和动物研究(体内实验)——来评估药物代谢,包括UGT活性。对抗首过代谢的有效策略对于提高药物生物利用度至关重要。这篇综述探讨了几种方法,包括前体药物、特定分子的联合给药或在制剂中使用抑制性辅料。将这些辅料纳入纳米制剂的策略显示出药物吸收和生物利用度的显著提高。这篇综述强调了靶向给药系统和辅料选择在克服代谢障碍方面的重要性,旨在优化药物疗效和患者预后。