Suppr超能文献

冷冻诱导干燥后光合功能恢复过程中的限制步骤及替代电子流途径的贡献 。 需注意,你提供的原文最后“. ”表述不完整,可能影响对完整内容的理解。

Limiting steps and the contribution of alternative electron flow pathways in the recovery of the photosynthetic functions after freezing-induced desiccation of .

作者信息

Georgieva K, Popova A V, Mihailova G, Ivanov A G, Velitchkova M

机构信息

Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.

Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria.

出版信息

Photosynthetica. 2022 Mar 7;60(1):136-146. doi: 10.32615/ps.2022.008. eCollection 2022.

Abstract

Friv. is unique with its ability to survive desiccation to an air-dry state during periods of extreme drought and freezing temperatures. To understand its survival strategies, it is important to examine the protective mechanisms not only during desiccation but also during rehydration. We investigated the involvement of alternative cyclic electron pathways during the recovery of photosynthetic functions after freezing-induced desiccation. Using electron transport inhibitors, the role of PGR5-dependent and NDH-dependent PSI-cyclic electron flows and plastid terminal oxidase were assessed during rehydration of desiccated leaves. Recovery of PSII and PSI, the capacity of PSI-driven cyclic electron flow, the redox state of plastoquinone pool, and the intersystem electron pool were analyzed. Data showed that the effect of alternative flows is more pronounced in the first hours of rehydration. In addition, the NDH-dependent cyclic pathway played a more determining role in the recovery of PSI than in the recovery of PSII.

摘要

Friv. 的独特之处在于,在极端干旱和低温时期,它能够在脱水至空气干燥状态下存活。为了了解其生存策略,不仅要研究脱水期间的保护机制,还要研究复水期间的保护机制,这一点很重要。我们研究了冷冻诱导脱水后光合功能恢复过程中交替循环电子途径的参与情况。使用电子传递抑制剂,在干燥叶片复水期间评估了依赖 PGR5 和依赖 NDH 的 PSI 循环电子流以及质体末端氧化酶的作用。分析了 PSII 和 PSI 的恢复情况、PSI 驱动的循环电子流能力、质体醌库的氧化还原状态以及系统间电子库。数据表明,交替电子流的影响在复水的最初几个小时更为明显。此外,依赖 NDH 的循环途径在 PSI 的恢复中比在 PSII 的恢复中发挥了更决定性的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db32/11559479/28f6bb49ee8e/PS-60-1-60136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验