Earnest Tom, Yang Braden, Kothapalli Deydeep, Sotiras Aristeidis
Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis; 4525 Scott Ave, Saint Louis, MO 63110.
Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St Louis; 660 S. Euclid Ave, Campus Box 8132, Saint Louis, MO 63110.
medRxiv. 2024 Nov 27:2024.11.25.24317943. doi: 10.1101/2024.11.25.24317943.
Imaging biomarkers enable quantification of amyloid, tau, and neurogenerative pathologies that develop in Alzheimer's Disease (AD). Interest in imaging biomarkers has led to a wide variety of biomarker definitions, some of which potentially offer less predictive value than others. We aimed to assess how different operationalizations of AD imaging biomarkers affect prediction of cognition.
We included individuals from ADNI who underwent amyloid-PET ([F]-Florbetapir), tau-PET ([F]-Flortaucipir), and volumetric MRI imaging. We compiled a large collection of imaging biomarker definitions (42 in total) spanning different pathologies (amyloid, tau, neurodegeneration) and variable types (continuous, binary, non-binary categorical). Using cross-validation, we trained regression models to predict neuropsychological performance, both globally and across different subdomains (Phenotype Harmonization Consortium composites), using different combinations of biomarkers. We also compared these biomarker models to support vector machines (SVMs) trained to predict cognition directly from imaging regions of interest. In a subsample of individuals with CSF biomarker readouts, we repeated experiments comparing the accuracy of models using imaging and fluid biomarkers. Additional analyses tested the predictive strength of imaging biomarkers when limited to specific clinical stages of disease (cognitive unimpaired vs. impaired) and when modeling longitudinal cognitive change.
Our sample included 490 people (247 female) with a mix of no impairment (n=288), mild impairment (n=163), and dementia (n=39). While almost all biomarkers tested were predictive of cognitive performance, we observed substantial variability in accuracy, even for measures of the same pathology. Tau biomarkers were the single most accurate single predictors, though combination of biomarkers spanning multiple pathologies were more accurate overall. SVM models were generally more accurate than models using traditional biomarkers. Incorporating continuous or non-binary categorical biomarkers was beneficial only for tau and neurodegeneration, but not amyloid. Patterns of results were largely consistent when considering different clinical stages of disease, neuropsychological domains, and longitudinal cognition. In the CSF subsample (n=246), imaging biomarkers strongly outperformed CSF versions for cognitive prediction.
We demonstrated that different imaging biomarker definitions can lead to variability in downstream predictive tasks. Researchers should consider how their biomarker operationalizations may help or hinder the assessment of disease severity.
成像生物标志物能够对阿尔茨海默病(AD)中出现的淀粉样蛋白、tau蛋白及神经退行性病变进行量化。对成像生物标志物的关注导致了各种各样的生物标志物定义,其中一些可能比其他定义的预测价值更低。我们旨在评估AD成像生物标志物的不同操作化方式如何影响认知预测。
我们纳入了来自阿尔茨海默病神经影像学计划(ADNI)的个体,这些个体接受了淀粉样蛋白PET([F]-氟代贝他吡)、tau蛋白PET([F]-氟代tau蛋白)和容积MRI成像。我们汇编了大量成像生物标志物定义(共42种),涵盖不同病变(淀粉样蛋白、tau蛋白、神经退行性变)和变量类型(连续型、二元型、非二元分类型)。使用交叉验证,我们训练回归模型以预测神经心理表现,包括整体表现以及不同子领域(表型协调联盟综合指标)的表现,使用不同的生物标志物组合。我们还将这些生物标志物模型与直接从感兴趣的成像区域训练以预测认知的支持向量机(SVM)进行比较。在有脑脊液生物标志物读数的个体子样本中,我们重复实验比较使用成像和脑脊液生物标志物的模型的准确性。额外的分析测试了成像生物标志物在限于疾病特定临床阶段(认知未受损与受损)时以及在对纵向认知变化进行建模时的预测强度。
我们的样本包括490人(247名女性),其中有无损害(n = 288)、轻度损害(n = 163)和痴呆(n = 39)的混合情况。虽然几乎所有测试的生物标志物都能预测认知表现,但我们观察到准确性存在很大差异,即使是针对相同病变的测量指标。tau蛋白生物标志物是最准确的单一预测指标,不过跨越多种病变的生物标志物组合总体上更准确。SVM模型通常比使用传统生物标志物的模型更准确。纳入连续型或非二元分类型生物标志物仅对tau蛋白和神经退行性变有益,对淀粉样蛋白则不然。在考虑疾病的不同临床阶段、神经心理领域和纵向认知时,结果模式在很大程度上是一致的。在脑脊液子样本(n = 246)中,成像生物标志物在认知预测方面明显优于脑脊液生物标志物。
我们证明了不同的成像生物标志物定义可能导致下游预测任务中的变异性。研究人员应考虑其生物标志物操作化方式可能如何帮助或阻碍疾病严重程度的评估。