Zhao Achen, Li Qiuyi, Meng Pengfei, Liu Ping, Wu Siqun, Lang Zhaobo, Song Yi, Macho Alberto P
Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
University of the Chinese Academy of Sciences, Beijing, China.
Plant Biotechnol J. 2025 Mar;23(3):792-806. doi: 10.1111/pbi.14539. Epub 2024 Dec 9.
Bacteria within the Ralstonia solanacearum species complex cause devastating diseases in numerous crops, causing important losses in food production and industrial supply. Despite extensive efforts to enhance plant tolerance to disease caused by Ralstonia, efficient and sustainable approaches are still missing. Before, we found that Ralstonia promotes the production of gamma-aminobutyric acid (GABA) in plant cells; GABA can be used as a nutrient by Ralstonia to sustain the massive bacterial replication during plant colonization. In this work, we used CRISPR-Cas9-mediated genome editing to mutate SlGAD2, which encodes the major glutamate decarboxylase responsible for GABA production in tomato, a major crop affected by Ralstonia. The resulting Slgad2 mutant plants show reduced GABA content, and enhanced tolerance to bacterial wilt disease upon Ralstonia inoculation. Slgad2 mutant plants did not show altered susceptibility to other tested biotic and abiotic stresses, including drought and heat. Interestingly, Slgad2 mutant plants showed altered microbiome composition in roots and soil. We reveal a strategy to enhance plant resistance to Ralstonia by the manipulation of plant metabolism leading to an impairment of bacterial fitness. This approach could be particularly efficient in combination with other strategies based on the manipulation of the plant immune system, paving the way to a sustainable solution to Ralstonia in agricultural systems.
茄科劳尔氏菌物种复合体中的细菌会在多种作物中引发毁灭性病害,给粮食生产和工业供应造成重大损失。尽管人们为提高植物对劳尔氏菌引起的病害的耐受性付出了巨大努力,但仍缺乏高效且可持续的方法。此前,我们发现劳尔氏菌会促进植物细胞中γ-氨基丁酸(GABA)的产生;GABA可被劳尔氏菌用作营养物质,以维持其在植物定殖过程中的大量细菌繁殖。在这项研究中,我们利用CRISPR-Cas9介导的基因组编辑技术使SlGAD2发生突变,SlGAD2编码番茄中负责GABA产生的主要谷氨酸脱羧酶,番茄是受劳尔氏菌影响的主要作物。由此产生的Slgad2突变体植株GABA含量降低,接种劳尔氏菌后对青枯病的耐受性增强。Slgad2突变体植株对其他测试的生物和非生物胁迫(包括干旱和高温)的易感性没有改变。有趣的是,Slgad2突变体植株的根和土壤中的微生物群落组成发生了变化。我们揭示了一种通过操纵植物代谢来损害细菌适应性从而增强植物对劳尔氏菌抗性的策略。这种方法与基于操纵植物免疫系统的其他策略相结合可能会特别有效,为农业系统中应对劳尔氏菌问题提供了一条可持续的解决方案。