Suppr超能文献

使用带观测器的Petri网对离散事件系统中的插入攻击进行识别。

Insertion attack identification in discrete event systems using petri nets with an observer.

作者信息

Ahmed Adeeb A, Chen Yufeng, El-Sherbeeny Ahmed M

机构信息

Control Science and Engineering Department, School of Electro-Mechanical Engineering, Xidian University, Xi'an, China.

Industrial Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2024 Dec 9;19(12):e0314104. doi: 10.1371/journal.pone.0314104. eCollection 2024.

Abstract

This study addresses the problem of attack identification in discrete event systems modeled with Petri nets, focusing specifically on sensor attacks that mislead observers to making incorrect decisions. Insertion attacks are one of the sensor attacks that are considered in this work. First, we formulate a novel observation structure to systematically model insertion attacks within the Petri net framework. Second, by generating an extended reachability graph that incorporates the observation structure, we can find a special class of markings whose components can have negative markings. Third, an observation place is computed by formulating an integer linear programming problem, enabling precise detection of attack occurrences. The occurrence of an attack can be identified by the number of tokens in the designed observation place. Finally, examples are provided to verify the proposed approach. Comparative analysis with existing techniques demonstrates that the reported approach offers enhanced detection accuracy and robustness, making it a significant advancement in the field of secure discrete event systems.

摘要

本研究解决了用Petri网建模的离散事件系统中的攻击识别问题,特别关注误导观察者做出错误决策的传感器攻击。插入攻击是本研究考虑的传感器攻击之一。首先,我们制定了一种新颖的观测结构,以便在Petri网框架内系统地对插入攻击进行建模。其次,通过生成包含观测结构的扩展可达图,我们可以找到一类特殊的标记,其组件可能具有负标记。第三,通过制定整数线性规划问题来计算观测位置,从而能够精确检测攻击的发生。攻击的发生可以通过设计的观测位置中的托肯数量来识别。最后,通过实例验证了所提出的方法。与现有技术的对比分析表明,所报道的方法具有更高的检测精度和鲁棒性,使其成为安全离散事件系统领域的一项重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc7/11627397/0b585b1dd820/pone.0314104.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验