Petit Bon Matteo, Beard Karen H, Bråthen Kari Anne, Lee Hanna, Jónsdóttir Ingibjörg S
Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
Department of Wildland Resources, Quinney College of Natural Resources and Ecology Center, Utah State University, Logan, Utah, USA.
Ecology. 2025 Jan;106(1):e4498. doi: 10.1002/ecy.4498. Epub 2024 Dec 9.
Environmental changes, such as climate warming and higher herbivory pressure, are altering the carbon balance of Arctic ecosystems; yet, how these drivers modify the carbon balance among different habitats remains uncertain. This hampers our ability to predict changes in the carbon sink strength of tundra ecosystems. We investigated how spring goose grubbing and summer warming-two key environmental-change drivers in the Arctic-alter CO fluxes in three tundra habitats varying in soil moisture and plant-community composition. In a full-factorial experiment in high-Arctic Svalbard, we simulated grubbing and warming over two years and determined summer net ecosystem exchange (NEE) alongside its components: gross ecosystem productivity (GEP) and ecosystem respiration (ER). After two years, we found net CO uptake to be suppressed by both drivers depending on habitat. CO uptake was reduced by warming in mesic habitats, by warming and grubbing in moist habitats, and by grubbing in wet habitats. In mesic habitats, warming stimulated ER (+75%) more than GEP (+30%), leading to a 7.5-fold increase in their CO source strength. In moist habitats, grubbing decreased GEP and ER by ~55%, while warming increased them by ~35%, with no changes in summer-long NEE. Nevertheless, grubbing offset peak summer CO uptake and warming led to a twofold increase in late summer CO source strength. In wet habitats, grubbing reduced GEP (-40%) more than ER (-30%), weakening their CO sink strength by 70%. One-year CO-flux responses were similar to two-year responses, and the effect of simulated grubbing was consistent with that of natural grubbing. CO-flux rates were positively related to aboveground net primary productivity and temperature. Net ecosystem CO uptake started occurring above ~70% soil moisture content, primarily due to a decline in ER. Herein, we reveal that key environmental-change drivers-goose grubbing by decreasing GEP more than ER and warming by enhancing ER more than GEP-consistently suppress net tundra CO uptake, although their relative strength differs among habitats. By identifying how and where grubbing and higher temperatures alter CO fluxes across the heterogeneous Arctic landscape, our results have implications for predicting the tundra carbon balance under increasing numbers of geese in a warmer Arctic.
环境变化,如气候变暖以及食草动物压力增大,正在改变北极生态系统的碳平衡;然而,这些驱动因素如何改变不同栖息地之间的碳平衡仍不确定。这妨碍了我们预测苔原生态系统碳汇强度变化的能力。我们研究了春季鹅刨食和夏季变暖这两个北极地区关键的环境变化驱动因素如何改变三种土壤湿度和植物群落组成各异的苔原栖息地中的二氧化碳通量。在北极斯瓦尔巴群岛进行的一项全因子实验中,我们在两年时间里模拟了刨食和变暖情况,并测定了夏季净生态系统交换量(NEE)及其组成部分:总生态系统生产力(GEP)和生态系统呼吸(ER)。两年后,我们发现这两个驱动因素都会根据栖息地抑制净二氧化碳吸收。在中生栖息地,变暖会降低二氧化碳吸收;在湿润栖息地,变暖和刨食都会降低二氧化碳吸收;在潮湿栖息地,刨食会降低二氧化碳吸收。在中生栖息地,变暖对ER的刺激作用(+75%)大于对GEP的刺激作用(+30%),导致其二氧化碳源强度增加了7.5倍。在湿润栖息地,刨食使GEP和ER降低了约55%,而变暖使其增加了约35%,整个夏季的NEE没有变化。然而,刨食抵消了夏季峰值二氧化碳吸收,变暖导致夏末二氧化碳源强度增加了两倍。在潮湿栖息地,刨食对GEP的降低作用(-40%)大于对ER的降低作用(-30%),使其二氧化碳汇强度减弱了70%。一年的二氧化碳通量响应与两年的响应相似,模拟刨食的效果与自然刨食的效果一致。二氧化碳通量率与地上净初级生产力和温度呈正相关。净生态系统二氧化碳吸收在土壤湿度含量约70%以上时开始出现,主要是由于ER下降。在此,我们揭示了关键的环境变化驱动因素——鹅刨食对GEP的降低作用大于对ER的降低作用,变暖对ER的增强作用大于对GEP的增强作用——一致抑制了苔原净二氧化碳吸收,尽管它们的相对强度在不同栖息地有所不同。通过确定刨食和较高温度如何以及在何处改变北极异质景观中的二氧化碳通量,我们的研究结果对于预测北极变暖且鹅数量增加情况下的苔原碳平衡具有重要意义。