Suppr超能文献

基于机器学习评估植物基凝聚剂对浊度的去除效果及凝聚剂投加量预测

Evaluation of plant-based coagulants for turbidity removal and coagulant dosage prediction using machine learning.

作者信息

Namane Poloko Ivy, Letshwenyo Moatlhodi Wise, Yahya Abid

机构信息

Botswana International University of Science and Technology, Palapye, Botswana.

Department of Civil and Environmental Engineering, School of Earth Sciences and Engineering, Palapye, Botswana.

出版信息

Environ Technol. 2025 Jun;46(14):2570-2585. doi: 10.1080/09593330.2024.2439183. Epub 2024 Dec 11.

Abstract

This study investigates the use of six plant-based coagulants - , , , , , and for the removal of turbidity from wastewater effluent. The coagulants were characterized using Scanning Electron Microscopy (SEM) to determine morphological structure, X-ray fluorescence (XRF) to assess chemical composition, and X-ray diffraction to analyse the molecular structure. The coagulation process was evaluated using jar tests with varying coagulant dosages and pH levels. SEM images revealed irregular, rough surfaces, with all materials being amorphous and non-crystalline. Significant levels of essential elements, including iron (Fe), calcium (Ca), sulphur (S), and potassium (K) were revealed. Turbidity removal efficiency fluctuated with pH, showing optimal results under alkaline conditions. Notably, strong negative correlations between pH and turbidity were observed for all coagulants except at a dosage of 20 g/L. Doubling the coagulant volume achieved turbidity reductions between 59% and 92.24%, except for and at a dosage of 40 g/L, which showed increased turbidity. The study also employed machine learning techniques to analyse the data and predict the most effective coagulant dosage under different pH conditions. These findings suggest that plant-based coagulants could be viable alternatives to chemical coagulants, with machine learning providing accurate predictions of coagulation performance. Further research is recommended to explore the capabilities of these natural coagulants fully.

摘要

本研究调查了六种植物基凝聚剂——[此处应补充六种凝聚剂具体名称],用于去除废水流出物中的浊度。使用扫描电子显微镜(SEM)对凝聚剂进行表征以确定形态结构,使用X射线荧光光谱(XRF)评估化学成分,并使用X射线衍射分析分子结构。通过在不同凝聚剂剂量和pH值水平下进行烧杯试验来评估凝聚过程。扫描电子显微镜图像显示表面不规则且粗糙,所有材料均为无定形且非晶态。揭示了包括铁(Fe)、钙(Ca)、硫(S)和钾(K)在内的大量必需元素。浊度去除效率随pH值波动,在碱性条件下显示出最佳结果。值得注意的是,除了在20 g/L剂量下的[此处应补充具体凝聚剂名称]外,所有凝聚剂在pH值和浊度之间均观察到强烈的负相关。将凝聚剂体积加倍可实现59%至92.24%的浊度降低,除了在40 g/L剂量下的[此处应补充具体凝聚剂名称]和[此处应补充具体凝聚剂名称]显示浊度增加。该研究还采用机器学习技术分析数据并预测不同pH条件下最有效的凝聚剂剂量。这些发现表明,植物基凝聚剂可能是化学凝聚剂的可行替代品,机器学习能够准确预测凝聚性能。建议进一步研究以充分探索这些天然凝聚剂的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验