Suppr超能文献

温度驱动的膜流动性变化对丝状温度敏感H2介导的光系统II修复产生不同影响。

Temperature-driven changes in membrane fluidity differentially impact FILAMENTATION TEMPERATURE-SENSITIVE H2-mediated photosystem II repair.

作者信息

Zhang Jingzhi, Lee Keun Pyo, Liu Yanling, Kim Chanhong

机构信息

Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Chinese Academy of Sciences, Shanghai 200032, China.

University of Chinese Academy of Sciences, 100049 Beijing, China.

出版信息

Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koae323.

Abstract

The Arabidopsis (Arabidopsis thaliana) yellow variegated2 (var2) mutant, lacking functional FILAMENTATION TEMPERATURE-SENSITIVE H2 (FtsH2), an ATP-dependent zinc metalloprotease, is a powerful tool for studying the photosystem II (PSII) repair process in plants. FtsH2, forming hetero-hexamers with FtsH1, FtsH5, and FtsH8, plays an indispensable role in PSII proteostasis. Although abiotic stresses like cold and heat increase chloroplast reactive oxygen species (ROS) and PSII damage, var2 mutants behave like wild-type plants under heat stress but collapse under cold stress. Our study on transgenic var2 lines expressing FtsH2 variants, defective in either substrate extraction or proteolysis, reveals that cold stress causes an increase in membrane viscosity, demanding more substrate extraction power than proteolysis by FtsH2. Overexpression of FtsH2 lacking substrate extraction activity does not rescue the cold-sensitive phenotype, while overexpression of FtsH2 lacking protease activity does in var2, with other FtsH isomers present. This indicates that FtsH2's substrate extraction activity is indispensable under cold stress when membranes become more viscous. As temperatures rise and membrane fluidity increases, substrate extraction activity from other isomers suffices, explaining the var2 mutant's heat stress resilience. These findings underscore the direct effect of membrane fluidity on the functionality of the thylakoid FtsH complex under stress. Future research should explore how membrane fluidity impacts proteostasis, potentially uncovering strategies to modulate thermosensitivity.

摘要

拟南芥(Arabidopsis thaliana)黄叶斑驳2(var2)突变体缺乏功能性的丝状温度敏感H2(FtsH2),一种ATP依赖性锌金属蛋白酶,是研究植物光系统II(PSII)修复过程的有力工具。FtsH2与FtsH1、FtsH5和FtsH8形成异源六聚体,在PSII蛋白质稳态中起不可或缺的作用。尽管冷和热等非生物胁迫会增加叶绿体活性氧(ROS)和PSII损伤,但var2突变体在热胁迫下表现得像野生型植物,而在冷胁迫下则会崩溃。我们对表达FtsH2变体的转基因var2株系的研究表明,这些变体在底物提取或蛋白水解方面存在缺陷,结果显示冷胁迫会导致膜粘度增加,这需要比FtsH2蛋白水解更多的底物提取能力。缺乏底物提取活性的FtsH2过表达不能挽救冷敏感表型,而在存在其他FtsH异构体的var2中,缺乏蛋白酶活性的FtsH2过表达则可以挽救。这表明当膜变得更粘稠时,FtsH2的底物提取活性在冷胁迫下是不可或缺的。随着温度升高和膜流动性增加,来自其他异构体的底物提取活性就足够了,这解释了var2突变体对热胁迫的耐受性。这些发现强调了膜流动性对胁迫下类囊体FtsH复合物功能的直接影响。未来的研究应该探索膜流动性如何影响蛋白质稳态,这可能会揭示调节热敏感性的策略。

相似文献

4
The variegated mutants lacking chloroplastic FtsHs are defective in D1 degradation and accumulate reactive oxygen species.
Plant Physiol. 2009 Dec;151(4):1790-801. doi: 10.1104/pp.109.146589. Epub 2009 Sep 18.
5
Chloroplast protein homeostasis is coupled with retrograde signaling.
Plant Signal Behav. 2019;14(11):1656037. doi: 10.1080/15592324.2019.1656037. Epub 2019 Aug 22.
7
Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis.
Plant Cell. 2005 Oct;17(10):2782-90. doi: 10.1105/tpc.105.035071. Epub 2005 Aug 26.
8
Cooperative D1 degradation in the photosystem II repair mediated by chloroplastic proteases in Arabidopsis.
Plant Physiol. 2012 Aug;159(4):1428-39. doi: 10.1104/pp.112.199042. Epub 2012 Jun 14.
9
The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis.
J Biol Chem. 2020 Jan 24;295(4):1036-1046. doi: 10.1074/jbc.RA119.011853. Epub 2019 Dec 13.

引用本文的文献

2
Characterization and Early Response of the DEAD Gene Family to Heat Stress in Tomato.
Plants (Basel). 2025 Apr 9;14(8):1172. doi: 10.3390/plants14081172.
3
Fixing PSII: Membrane fluidity facilitates FtsH functions.
Plant Cell. 2024 Dec 23;37(1). doi: 10.1093/plcell/koaf003.

本文引用的文献

1
Photosynthetic ROS and retrograde signaling pathways.
New Phytol. 2024 Nov;244(4):1183-1198. doi: 10.1111/nph.20134. Epub 2024 Sep 17.
4
Photosystem II as a chemiluminescence-induced photosensitizer for photoelectrochemical biofuel cell-type biosensing system.
Biosens Bioelectron. 2023 Apr 15;226:115133. doi: 10.1016/j.bios.2023.115133. Epub 2023 Feb 8.
5
LHC-like Proteins: The Guardians of Photosynthesis.
Int J Mol Sci. 2023 Jan 28;24(3):2503. doi: 10.3390/ijms24032503.
6
Cooperative role of AtRsmD and AtRimM proteins in modification and maturation of 16S rRNA in plastids.
Plant J. 2023 Apr;114(2):310-324. doi: 10.1111/tpj.16135. Epub 2023 Feb 26.
8
EXECUTER2 modulates the EXECUTER1 signalosome through its singlet oxygen-dependent oxidation.
Mol Plant. 2022 Mar 7;15(3):438-453. doi: 10.1016/j.molp.2021.12.016. Epub 2021 Dec 28.
9
Cold acclimation alleviates cold stress-induced PSII inhibition and oxidative damage in tobacco leaves.
Plant Signal Behav. 2022 Dec 31;17(1):2013638. doi: 10.1080/15592324.2021.2013638. Epub 2021 Dec 29.
10
Current Understanding of Temperature Stress-Responsive Chloroplast FtsH Metalloproteases.
Int J Mol Sci. 2021 Nov 9;22(22):12106. doi: 10.3390/ijms222212106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验