Rahafrooz Maryam, Elbers Danne C, Gopal Jay R, Ren Junling, Chan Nathan H, Yildirim Cenk, Desai Akshay S, Santos Abigail A, Murray Karen, Havighurst Thomas, Udell Jacob A, Farkouh Michael E, Cooper Lawton, Gaziano J Michael, Vardeny Orly, Mao Lu, Kim KyungMann, Gagnon David R, Solomon Scott D, Joseph Jacob
VA Providence Healthcare System, Providence, RI 02908, United States.
The Warren Alpert School of Medicine, Brown University, Providence, RI 02903, United States.
J Am Med Inform Assoc. 2025 Feb 1;32(2):349-356. doi: 10.1093/jamia/ocae303.
Event capture in clinical trials is resource-intensive, and electronic medical records (EMRs) offer a potential solution. This study develops algorithms for EMR-based death and hospitalization capture and compares them with traditional event capture methods.
We compared the effectiveness of EMR-based event capture and site-captured events adjudicated by a clinical endpoint committee in the multi-center INfluenza Vaccine to Effectively Stop cardio Thoracic Events and Decompensated heart failure (INVESTED) trial for participants from the Veterans Affairs healthcare system. Varying time windows around event dates were used to optimize events matching. The algorithms were externally validated for heart failure hospitalizations in the Medical Information Mart for Intensive Care (MIMIC)-IV database.
We observed 100% sensitivity for death events with a 1-day window. Sensitivity for cardiovascular, heart failure, pulmonary, and nonspecific cardiopulmonary hospitalizations using discharge diagnosis codes varied between 75% and 95%. Including Centers for Medicare & Medicaid Services data improved sensitivity with no meaningful decrease in specificity. The MIMIC-IV analysis showed 82% sensitivity and 99% specificity for heart failure hospitalizations.
EMR-based method accurately identifies all-cause mortality and demonstrates high accuracy for cardiopulmonary hospitalizations. This study underscores the importance of optimal time windows, data completeness, and domain variability in EMR systems.
EMR-based methods are effective strategies for capturing death and hospitalizations in clinical trials; however, their effectiveness may be influenced by the complexity of events and domain variability across different EMR systems. Nonetheless, EMR-based methods can serve as a valuable complement to traditional methods.
临床试验中的事件捕捉需要耗费大量资源,而电子病历(EMR)提供了一种潜在的解决方案。本研究开发了基于电子病历的死亡和住院捕捉算法,并将其与传统的事件捕捉方法进行比较。
在多中心流感疫苗有效预防心胸事件和失代偿性心力衰竭(INVESTED)试验中,我们比较了基于电子病历的事件捕捉与由临床终点委员会判定的现场捕捉事件对退伍军人事务医疗系统参与者的有效性。围绕事件日期使用不同的时间窗口来优化事件匹配。这些算法在重症监护医学信息集市(MIMIC)-IV数据库中针对心力衰竭住院情况进行了外部验证。
我们观察到在1天窗口内死亡事件的敏感性为100%。使用出院诊断代码对心血管、心力衰竭、肺部和非特异性心肺住院的敏感性在75%至95%之间变化。纳入医疗保险和医疗补助服务中心的数据提高了敏感性,而特异性没有显著降低。MIMIC-IV分析显示心力衰竭住院的敏感性为82%,特异性为99%。
基于电子病历的方法能够准确识别全因死亡率,并且在心肺住院方面显示出高准确性。本研究强调了电子病历系统中最佳时间窗口、数据完整性和领域可变性的重要性。
基于电子病历的方法是临床试验中捕捉死亡和住院情况的有效策略;然而,它们的有效性可能会受到事件复杂性和不同电子病历系统之间领域可变性的影响。尽管如此,基于电子病历的方法可以作为传统方法的有价值补充。