Vorobevskaia Ekaterina, Loot Céline, Mazel Didier, Schlierf Michael
B CUBE, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France.
Sci Adv. 2024 Dec 13;10(50):eadp8756. doi: 10.1126/sciadv.adp8756.
Multiple antibiotic resistances are a major global health threat. The predominant tool for adaptation in Gram-negative bacteria is the integron. Under stress, it rearranges gene cassettes to offer an escape using the tyrosine recombinase IntI, recognizing folded DNA hairpins, the sites. Four recombinases and two sites form the synaptic complex. Yet, for unclear reasons, the recombination efficiency varies greatly. Here, we established an optical tweezers force spectroscopy assay to probe the synaptic complex stability and revealed, for seven combinations of sites, significant variability in the mechanical stability. We found a strong correlation between mechanical stability and recombination efficiency of sites in vivo, indicating a regulatory mechanism from the DNA structure to the macromolecular complex stability. Taking into account known forces during DNA metabolism, we propose that the variation of the integron in vivo recombination efficiency is mediated by the synaptic complex stability. We anticipate that further recombination processes are also affected by their corresponding mechanical stability.
多重抗生素耐药性是全球主要的健康威胁。革兰氏阴性菌适应环境的主要工具是整合子。在压力下,它通过酪氨酸重组酶IntI重排基因盒,IntI识别折叠的DNA发夹结构即att位点,从而提供一种逃避机制。四种重组酶和两个att位点形成突触复合体。然而,由于不明原因,重组效率差异很大。在这里,我们建立了一种光镊力谱测定法来探测突触复合体的稳定性,并揭示了对于七种att位点组合,其机械稳定性存在显著差异。我们发现体内att位点的机械稳定性与重组效率之间存在很强的相关性,这表明从DNA结构到大分子复合体稳定性存在一种调节机制。考虑到DNA代谢过程中的已知作用力,我们提出整合子体内重组效率的差异是由突触复合体稳定性介导的。我们预计进一步的重组过程也会受到其相应机械稳定性的影响。