Suppr超能文献

通过框架维格纳函数利用非稳定器态扩展克利福德电路的经典可模拟边界

Extending Classically Simulatable Bounds of Clifford Circuits with Nonstabilizer States via Framed Wigner Functions.

作者信息

Park Guedong, Kwon Hyukjoon, Jeong Hyunseok

机构信息

NextQuantum and Department of Physics and Astronomy, <a href="https://ror.org/04h9pn542">Seoul National University</a>, Seoul 08826, Republic of Korea.

School of Computational Sciences, <a href="https://ror.org/041hz9568">Korea Institute for Advanced Study</a>, Seoul 02455, Republic of Korea.

出版信息

Phys Rev Lett. 2024 Nov 29;133(22):220601. doi: 10.1103/PhysRevLett.133.220601.

Abstract

The Wigner function formalism has played a pivotal role in examining the nonclassical aspects of quantum states and their classical simulatability. Nevertheless, its application in qubit systems faces limitations due to negativity induced by Clifford gates. In this Letter, we propose a novel classical simulation method for qubit Clifford circuits based on the framed Wigner function, an extended form of the Wigner function with an additional phase degree of freedom. In our framework, Clifford gates do not induce negativity by switching to a suitable frame; thereby, a wide class of nonstabilizer states can be represented positively. By leveraging this technique, we show that some marginal outcomes of Clifford circuits with nonstabilizer state inputs can be efficiently sampled at polynomial time and memory costs. We develop a graph-theoretical approach to identify classically simulatable marginal outcomes and apply it to log-depth random Clifford circuits. We also present the outcome probability estimation scheme using the framed Wigner function and discuss its precision. Our approach opens new avenues for utilizing quasiprobabilities to explore classically simulatable quantum circuits.

摘要

维格纳函数形式体系在研究量子态的非经典特性及其经典可模拟性方面发挥了关键作用。然而,由于克利福德门所引发的负性,其在量子比特系统中的应用面临着局限性。在本信函中,我们基于加框维格纳函数(维格纳函数的一种扩展形式,具有额外的相位自由度),提出了一种针对量子比特克利福德电路的新型经典模拟方法。在我们的框架中,通过切换到合适的框架,克利福德门不会引发负性;因此,一大类非稳定器态能够以正定的形式表示。利用这一技术,我们表明,对于输入为非稳定器态的克利福德电路的一些边缘结果,可以在多项式时间和内存成本下有效地进行采样。我们开发了一种图论方法来识别经典可模拟的边缘结果,并将其应用于对数深度随机克利福德电路。我们还提出了使用加框维格纳函数的结果概率估计方案,并讨论了其精度。我们的方法为利用准概率探索经典可模拟量子电路开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验