Suppr超能文献

机器学习模型在预测抗癫痫药物反应方面的准确性如何:一项系统综述。

How accurate are machine learning models in predicting anti-seizure medication responses: A systematic review.

作者信息

Abdaltawab Ahmed, Chang Lin-Ching, Mansour Mohammed, Koubeissi Mohamad

机构信息

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Department of Data Analytics, The Catholic University of America, Washington, DC 20064, USA.

出版信息

Epilepsy Behav. 2025 Feb;163:110212. doi: 10.1016/j.yebeh.2024.110212. Epub 2024 Dec 13.

Abstract

IMPORTANCE

Current epilepsy management protocols often depend on anti-seizure medication (ASM) trials and assessment of clinical response. This may delay the initiation of the ASM regimen that might optimally balance efficacy and tolerability for individual patients. Machine learning (ML) can offer a promising tool for efficiently predicting ASM response.

OBJECTIVE

The objective of this review is to synthesize the available information about the effectiveness and limitations of ML models in predicting and classifying the response of patients with epilepsy to ASMs, and to assess the impact of various data inputs on prediction performance.

EVIDENCE REVIEW

We conducted a comprehensive search of studies utilizing ML models for ASM response prediction using PubMed and Scopus up until November 2024.

FINDINGS

The review included 37 studies. Various data types, including clinical information, brain MRI, EEG, and genetic data, are useful in predicting responses to ASMs. Tree-based ML algorithms and Support Vector Machines are the most used models. Reported results vary widely, with certain models achieving near-perfect accuracy and others performing similar to random classifiers. The review also highlights the limitations of this research field, especially concerning the quality and quantity of data.

CONCLUSIONS AND RELEVANCE

The findings indicate that while ML models show great promise in predicting ASM responses in epilepsy, further research is required to refine these models for practical clinical application. The review underscores both the potential of ML in advancing precision medicine in epilepsy management and the need for continued research to improve prediction accuracy.

摘要

重要性

当前的癫痫管理方案通常依赖于抗癫痫药物(ASM)试验和临床反应评估。这可能会延迟启动可能对个体患者在疗效和耐受性之间实现最佳平衡的ASM治疗方案。机器学习(ML)可为有效预测ASM反应提供一个有前景的工具。

目的

本综述的目的是综合关于ML模型在预测和分类癫痫患者对ASM反应的有效性和局限性的现有信息,并评估各种数据输入对预测性能的影响。

证据综述

我们利用PubMed和Scopus对截至2024年11月使用ML模型进行ASM反应预测的研究进行了全面检索。

研究结果

该综述纳入了37项研究。包括临床信息、脑部MRI、脑电图和基因数据在内的各种数据类型在预测对ASM的反应方面都很有用。基于树的ML算法和支持向量机是最常用的模型。报告的结果差异很大,某些模型达到了近乎完美的准确率,而其他模型的表现则与随机分类器相似。该综述还强调了这一研究领域的局限性,特别是关于数据的质量和数量。

结论与意义

研究结果表明,虽然ML模型在预测癫痫患者的ASM反应方面显示出很大的前景,但需要进一步研究来完善这些模型以用于实际临床应用。该综述强调了ML在推进癫痫管理中的精准医学方面的潜力以及持续研究以提高预测准确性的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验