Guo Yan, Zhao Weichen, Li Da, Liu Jinnan, Qian Jin, Pang Lixia, Zhou Tao, Liu Wenfeng, Liu Zhaobo, Huang Houbing, Zhai Jiwei, Zhou Di
Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
Institute of Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 200092, China.
Adv Mater. 2025 Feb;37(6):e2415652. doi: 10.1002/adma.202415652. Epub 2024 Dec 15.
Polymer dielectrics are crucial for electronic communications and industrial applications due to their high breakdown field strength (E), fast charge/discharge speed, and temperature stability. The upcoming electronic-electrical systems pose a significant challenge, necessitating polymeric dielectrics to exhibit exceptional thermal stability and energy storage capabilities at high temperatures. Here, ultra-high dielectric constant (ɛ) and charge/discharge efficiency (η) of 0.55Bi(NaK)TiO-0.45(BiSr)TiO (BNKT-BST) ceramics are prepared by the solid-phase reaction method and added to polyetherimide (PEI) to form BNKT-BST/PEI nanocomposites with various structures. The findings indicate that the sandwich-structured BNKT-BST/PEI nanocomposite achieves the highest discharged energy density (U) of 7.7 J cm with η of 80.2% when the E is 650 MV m at 150 °C. This is primarily due to the incorporation of BNKT-BST nanoparticles and the multilayer structure design, which significantly improves the composite's ɛ and E. Additionally, the sandwich-structured composites show excellent cycling stability at 500 MV m and 150 °C, with U of ≈ 4.7 J cm and η greater than 90%. The research presents nanocomposites with high energy storage density and excellent stability, crucial for the practical application of polymer dielectrics in high-temperature environments.
聚合物电介质因其高击穿场强(E)、快速充放电速度和温度稳定性,对于电子通信和工业应用至关重要。即将出现的电子电气系统带来了重大挑战,这就要求聚合物电介质在高温下具有出色的热稳定性和储能能力。在此,通过固相反应法制备了0.55Bi(NaK)TiO-0.45(BiSr)TiO(BNKT-BST)陶瓷的超高介电常数(ɛ)和充放电效率(η),并将其添加到聚醚酰亚胺(PEI)中,以形成具有各种结构的BNKT-BST/PEI纳米复合材料。研究结果表明,当在150°C下E为650 MV m时,三明治结构的BNKT-BST/PEI纳米复合材料实现了最高放电能量密度(U)为7.7 J cm,η为80.2%。这主要归因于BNKT-BST纳米颗粒的掺入和多层结构设计,这显著提高了复合材料的ɛ和E。此外,三明治结构的复合材料在500 MV m和150°C下表现出出色的循环稳定性,U约为4.7 J cm,η大于90%。该研究提出了具有高储能密度和出色稳定性的纳米复合材料,这对于聚合物电介质在高温环境中的实际应用至关重要。