Park Sangwoo, Paek Justin H, Colville Marshall J, Huang Ling-Ting, Struzyk Audrey P, Womack Sydney J, Neelamegham Sriram, Reesink Heidi L, Paszek Matthew J
Graduate Field of Biophysics, Cornell University, Ithaca, NY, USA.
Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
bioRxiv. 2024 Dec 6:2024.12.05.627089. doi: 10.1101/2024.12.05.627089.
The abnormally thick glycocalyx of cancer cells can provide a physical barrier to immune cell recognition and effective immunotherapy. Here, we demonstrate an optical method based on Scanning Angle Interference Microscopy (SAIM) for the screening of therapeutic agents that can disrupt the glycocalyx layer as a strategy to improve anti-cancer immune responses. We developed a new membrane labeling strategy utilizing leucine zipper pairs to fluorescently mark the glycocalyx layer boundary for precise and robust measurement of glycocalyx thickness with SAIM. Using this platform, we evaluated the effects of glycosylation inhibitors and targeted enzymatic degraders of the glycocalyx, with particular focus on strategies for cholangiocarcinoma (CCA), a highly lethal malignancy with limited therapeutic options. We found that CCA had the highest mean expression of the cancer-associated mucin, MUC1, across all cancers represented in the cancer cell line encyclopedia. Pharmacological inhibitors of mucin-type O-glycosylation and mucin-specific proteases, such as StcE, could dramatically reduce the glycocalyx layer in the YSCCC model of intrahepatic CCA. Motivated by these findings, we engineered Natural Killer (NK) cells tethered with StcE to enhance NK cell-mediated cytotoxicity against CCA. In a CCA xenograft model, these engineered NK cells demonstrated superior anti-tumor efficacy compared to wild-type NK cells, with no observable adverse effects. Our findings not only provide a reliable imaging-based screening platform for evaluating glycocalyx-targeting pharmacological interventions but also offer mechanistic insights into how CCA may avoid immune elimination through fortification of the glycocalyx layer with mucins. Additionally, this work presents a novel therapeutic strategy for mucin-overexpressing cancers, potentially improving immunotherapy efficacy across various cancer types.
癌细胞异常增厚的糖萼可为免疫细胞识别和有效的免疫治疗提供物理屏障。在此,我们展示了一种基于扫描角干涉显微镜(SAIM)的光学方法,用于筛选能够破坏糖萼层的治疗药物,以此作为改善抗癌免疫反应的策略。我们开发了一种新的膜标记策略,利用亮氨酸拉链对荧光标记糖萼层边界,以便用SAIM精确且可靠地测量糖萼厚度。利用这个平台,我们评估了糖基化抑制剂和糖萼的靶向酶降解剂的效果,特别关注胆管癌(CCA)的治疗策略,CCA是一种治疗选择有限的高致死性恶性肿瘤。我们发现,在癌细胞系百科全书中所代表的所有癌症中,CCA的癌症相关黏蛋白MUC1的平均表达最高。黏蛋白型O-糖基化和黏蛋白特异性蛋白酶(如StcE)的药理学抑制剂可显著减少肝内CCA的YSCCC模型中的糖萼层。基于这些发现,我们构建了与StcE相连的自然杀伤(NK)细胞,以增强NK细胞介导的对CCA的细胞毒性。在CCA异种移植模型中,这些工程化NK细胞与野生型NK细胞相比显示出卓越的抗肿瘤疗效,且未观察到明显的不良反应。我们的发现不仅为评估靶向糖萼的药理学干预提供了一个可靠的基于成像的筛选平台,还提供了关于CCA如何通过用黏蛋白强化糖萼层来避免免疫清除的机制性见解。此外,这项工作为黏蛋白过表达的癌症提出了一种新的治疗策略,有可能提高各种癌症类型的免疫治疗疗效。