Nicoletti Chiara, Massenet Jimmy, Pintado-Urbanc Andreas P, Connor Leah J, Nicolau Monica, Sundar Swetha, Xu Mingzhi, Schmitt Anthony, Zhang Wenxin, Fang Zesen, Chan Tsz Ching Indigo, Tapscott Stephen J, Cheung Tom H, Simon Matthew D, Caputo Luca, Puri Pier Lorenzo
Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA.
Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT.
bioRxiv. 2024 Dec 5:2024.12.05.627024. doi: 10.1101/2024.12.05.627024.
MYOD is an E-box sequence-specific basic Helix-Loop-Helix (bHLH) transcriptional activator that, when expressed in non-muscle cells, induces nuclear reprogramming toward skeletal myogenesis by promoting chromatin accessibility at previously silent loci. Here, we report on the identification of a previously unrecognized property of MYOD as repressor of gene expression, via E-box-independent chromatin binding within accessible genomic elements, which invariably leads to reduced chromatin accessibility. MYOD-mediated repression requires the integrity of functional domains previously implicated in MYOD-mediated activation of gene expression. Repression of mitogen- and growth factor-responsive genes occurs through promoter binding and requires a highly conserved domain within the first helix. Repression of cell-of-origin/alternative lineage genes occurs via binding and decommissioning of distal regulatory elements, such as super-enhancers (SE), which requires the N-terminal activation domain as well as two chromatin-remodeling domains and leads to reduced strength of CTCF-mediated chromatin interactions. Surprisingly, MYOD-mediated chromatin compaction and repression of transcription do not associate with reduction of H3K27ac, the conventional histone mark of enhancer or promoter activation, but with reduced levels of the recently discovered histone H4 acetyl-methyl lysine modification (Kacme). These results extend MYOD biological properties beyond the current dogma that restricts MYOD function to a monotone transcriptional activator and reveal a previously unrecognized functional versatility arising from an alternative chromatin recruitment through E-box or non-E-box sequences. The E-box independent repression of gene expression by MYOD might provide a promiscuous mechanism to reduce chromatin accessibility and repress cell-of-origin/alternative lineage and growth factor/mitogen-responsive genes to safeguard the integrity of cell identity during muscle progenitor commitment toward the myogenic lineage.
MYOD是一种E-box序列特异性碱性螺旋-环-螺旋(bHLH)转录激活因子,当在非肌肉细胞中表达时,它通过促进以前沉默位点的染色质可及性,诱导向骨骼肌生成的核重编程。在这里,我们报告了通过在可及基因组元件内与E-box无关的染色质结合,鉴定出MYOD作为基因表达抑制因子的一种以前未被认识的特性,这总是导致染色质可及性降低。MYOD介导的抑制作用需要先前与MYOD介导的基因表达激活相关的功能域的完整性。有丝分裂原和生长因子反应性基因的抑制通过启动子结合发生,并且需要第一个螺旋内的一个高度保守的结构域。起源细胞/替代谱系基因的抑制通过远端调控元件(如超级增强子(SE))的结合和失活发生,这需要N端激活结构域以及两个染色质重塑结构域,并导致CTCF介导的染色质相互作用强度降低。令人惊讶的是,MYOD介导的染色质压缩和转录抑制与增强子或启动子激活的传统组蛋白标记H3K27ac的减少无关,而是与最近发现的组蛋白H4乙酰甲基赖氨酸修饰(Kacme)水平的降低有关。这些结果将MYOD的生物学特性扩展到当前将MYOD功能限制为单调转录激活因子的教条之外,并揭示了通过E-box或非E-box序列的替代染色质募集产生的以前未被认识的功能多样性。MYOD对基因表达的E-box非依赖性抑制可能提供一种混杂机制,以降低染色质可及性,并抑制起源细胞/替代谱系以及生长因子/有丝分裂原反应性基因,从而在肌肉祖细胞向肌源性谱系定向分化过程中保护细胞身份的完整性。