Suppr超能文献

一种预测接受同步放化疗的宫颈癌患者急性放射性肠炎恢复情况的新型评分系统:一项中国西南队列研究。

A Novel Scoring System to Predict Acute Radiation Enteritis Recovery in Cervical Cancer Patients Undergoing Concurrent Chemoradiotherapy: A Southwest China Cohort Study.

作者信息

Zeng Chuan, Ji Jia, Huang Yusheng, Peng Yuan, Zhang Xiaoyue, Yang Zhenzhou, Guo Zhengjun

机构信息

Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.

Chongqing Key Laboratory of Immunotherapy, Chongqing, People's Republic of China.

出版信息

Int J Gen Med. 2024 Dec 9;17:5907-5919. doi: 10.2147/IJGM.S485087. eCollection 2024.

Abstract

PURPOSE

To establish a pragmatic and effective predictive model for monitoring the recovery of radiation enteritis (RE) in cervical cancer patients undergoing concurrent chemoradiotherapy (CCRT).

METHODS

This study included 105 cervical cancer patients undergoing CCRT. We assessed baseline clinicopathologic characteristics, evaluated the effects of CCRT on circulating immune cells, tumor biomarkers, and inflammatory cytokines, and developed a predictive scoring system, the Immune-Tumor-Score (ITS), using the LASSO-Cox regression model. The model performance of LASSO-Cox and nomogram was compared via ROC curve and calibration curve.

RESULTS

The median age of the patients was 55 years, with 53.3% having a normal BMI and 46.7% having positive lymph nodes. Post-CCRT, significant decreases were observed in lymphocyte counts, T-cell subpopulations, and tumor markers (CA125, TPA, SCCA, CYFRA21). The CD4/CD8 ratio and IL10 levels were significantly higher post-CCRT, while inflammation indexes (NLR, ELR) increased, and LMR decreased. The ITS, derived from 11 significant parameters, effectively predicted RE recovery, outperforming a traditional nomogram. Higher ITS scores correlated with shorter RE recovery times, as validated by Kaplan-Meier analyses and ROC curves (AUC = 0.822).

CONCLUSION

The ITS system provides a robust and reliable tool for predicting RE recovery in cervical cancer patients undergoing CCRT, surpassing traditional models in accuracy and reliability. This tool enables better patient management by allowing for timely interventions and personalized treatment strategies. Future research should focus on validating these findings in larger cohorts and integrating additional clinical parameters to enhance the predictive power of the ITS.

摘要

目的

建立一个实用且有效的预测模型,用于监测接受同步放化疗(CCRT)的宫颈癌患者放射性肠炎(RE)的恢复情况。

方法

本研究纳入了105例接受CCRT的宫颈癌患者。我们评估了基线临床病理特征,评估了CCRT对循环免疫细胞、肿瘤生物标志物和炎性细胞因子的影响,并使用LASSO-Cox回归模型开发了一种预测评分系统,即免疫-肿瘤评分(ITS)。通过ROC曲线和校准曲线比较了LASSO-Cox和列线图的模型性能。

结果

患者的中位年龄为55岁,53.3%的患者BMI正常,46.7%的患者淋巴结阳性。CCRT后,淋巴细胞计数、T细胞亚群和肿瘤标志物(CA125、TPA、SCCA、CYFRA21)显著下降。CCRT后CD4/CD8比值和IL10水平显著升高,而炎症指标(NLR、ELR)升高,LMR降低。源自11个显著参数的ITS有效地预测了RE的恢复情况,优于传统列线图。较高的ITS评分与较短的RE恢复时间相关,这通过Kaplan-Meier分析和ROC曲线得到验证(AUC = 0.822)。

结论

ITS系统为预测接受CCRT的宫颈癌患者的RE恢复提供了一个强大且可靠的工具,在准确性和可靠性方面优于传统模型。该工具通过允许及时干预和个性化治疗策略,实现了更好的患者管理。未来的研究应集中在更大队列中验证这些发现,并整合更多临床参数以增强ITS的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d91/11645290/a6ee52b3d335/IJGM-17-5907-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验