Suppr超能文献

使用可编程编码超表面的全息通信。

Holographic communication using programmable coding metasurface.

作者信息

Zhang Fan, Wang Chaohui, Feng Weike, Liu Tong, Wang Zhengjie, Wang Yanzhao, Wang Mingzhao, Xu He-Xiu

机构信息

Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.

PLA of 93154, Jiuquan 735000, China.

出版信息

Nanophotonics. 2024 Mar 8;13(8):1509-1519. doi: 10.1515/nanoph-2023-0925. eCollection 2024 Apr.

Abstract

With rapid development of holography, metasurface-based holographic communication scheme shows great potential in development of adaptive electromagnetic function. However, conventional passive metasurfaces are severely limited by poor reconfigurability, which makes it difficult to achieve wavefront manipulations in real time. Here, we propose a holographic communication strategy that on-demand target information is firstly acquired and encoded via a depth camera integrated with modified YOLOv5s target detection algorithm, then transmitted by software defined radio modules with long term evolution at 5 GHz, and finally reproduced in the form of holographic images by spin-decoupled programmable coding metasurfaces at 12 GHz after decoding through modified Gerchberg-Saxton algorithm. Experiments are conducted to demonstrate the brand-new concept of optical information conversion to electromagnetic one via above intelligent scheme. Our strategy may open a novel avenue toward applications of near-field communication based on adaptive variation of electric field patterns (i.e. holographic images).

摘要

随着全息技术的迅速发展,基于超表面的全息通信方案在自适应电磁功能的发展中显示出巨大潜力。然而,传统的无源超表面受到可重构性差的严重限制,这使得实时实现波前操纵变得困难。在此,我们提出一种全息通信策略,即首先通过集成了改进型YOLOv5s目标检测算法的深度相机获取并编码按需目标信息,然后由5GHz长期演进的软件定义无线电模块进行传输,最后在通过改进的格尔奇贝格 - 萨克斯顿算法解码后,由12GHz的自旋解耦可编程编码超表面以全息图像的形式再现。通过实验来证明通过上述智能方案将光信息转换为电磁信息的全新概念。我们的策略可能为基于电场模式(即全息图像)自适应变化的近场通信应用开辟一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ea/11635963/50865e5b6915/j_nanoph-2023-0925_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验