Sayer J M, Yagi H, van Bladeren P J, Levin W, Jerina D M
J Biol Chem. 1985 Feb 10;260(3):1630-40.
We have examined the selectivity of rat liver microsomal epoxide hydrolase (EC 3.3.2.3) toward all of the possible positional isomers of benzo-ring diol epoxides and tetrahydroepoxides of benz[a]anthracene, as well as the 1,2-diol 3,4-epoxides of triphenylene. This set includes compounds with no bay region in the vicinity of the benzo-ring, a bay-region diol group, a bay-region epoxide group, and (for the triphenylene derivatives) both a bay-region diol and a bay-region epoxide. In all cases where both the tetrahydroepoxides and the corresponding diol epoxides were examined, there is a large retarding effect of hydroxyl substitution on the rate of the enzyme-catalyzed hydration. When the tetrahydroepoxides are fair or poor substrates (epoxide group in the 1,2-, 8,9-, or 10,11-position), the additional retardation introduced by adjacent hydroxyl groups causes the enzyme-catalyzed hydrolysis of the corresponding diol epoxides to be insignificantly slow or nonexistent. In contrast, a benz[a]anthracene derivative with an epoxide group in the 3,4-position, (-)-tetrahydrobenz[a]anthracene (3R,4S)-epoxide, has been identified as the best substrate known for epoxide hydrolase, with a Vmax at 37 degrees C and pH 8.4 of 6800 nmol/min/mg of protein, and the two diastereomeric (+/-)-benz[a]anthracene 1,2-diol 3,4-epoxides, unlike all the other diol epoxides examined to date, are moderately good substrates for epoxide hydrolase. This novel observation is accounted for by the fact that the very high reactivity of the tetrahydrobenz[a]anthracene 3,4-epoxide system towards epoxide hydrolase is large enough to overcome a kinetically unfavorable effect of hydroxyl substitution. The enantioselectivity and positional selectivity of the enzyme have been determined for the tetrahydro-1,2- and -3,4-epoxides of benz[a]anthracene as well as the 1,2-diol 3,4-epoxides. When the epoxide is located in the 3,4-position, the benzylic carbon is the preferred site of attack, whereas for the enantiomers of the bay-region tetrahydro-1,2-epoxides, the chemically less reactive non-benzylic carbon is preferred. The regio- and enantioselectivity of epoxide hydrolase are discussed in terms of a possible model for the hydrophobic binding site of this enzyme.
我们研究了大鼠肝脏微粒体环氧化物水解酶(EC 3.3.2.3)对苯并环二醇环氧化物和苯并[a]蒽的四氢环氧化物的所有可能位置异构体,以及三亚苯的1,2 -二醇3,4 -环氧化物的选择性。这组化合物包括在苯并环附近没有湾区的化合物、具有湾区二醇基团的化合物、具有湾区环氧化物基团的化合物,以及(对于三亚苯衍生物)同时具有湾区二醇和湾区环氧化物的化合物。在所有同时检测了四氢环氧化物和相应二醇环氧化物的情况下,羟基取代对酶催化水合速率有很大的阻碍作用。当四氢环氧化物是中等或较差的底物(环氧化物基团在1,2 -、8,9 -或10,11 -位)时,相邻羟基引入的额外阻碍使得相应二醇环氧化物的酶催化水解极其缓慢或不存在。相比之下,一种在3,4 -位带有环氧化物基团的苯并[a]蒽衍生物,(-)-四氢苯并[a]蒽(3R,4S)-环氧化物,已被确定为环氧化物水解酶已知的最佳底物,在37℃和pH 8.4时Vmax为6800 nmol/min/mg蛋白质,并且两种非对映体(+/-)-苯并[a]蒽1,2 -二醇3,4 -环氧化物,与迄今检测的所有其他二醇环氧化物不同,是环氧化物水解酶的中等良好底物。这一新颖的观察结果可以用以下事实来解释:四氢苯并[a]蒽3,4 -环氧化物系统对环氧化物水解酶的极高反应活性足以克服羟基取代在动力学上的不利影响。已经确定了该酶对苯并[a]蒽的四氢-1,2 -和-3,4 -环氧化物以及1,2 -二醇3,4 -环氧化物的对映选择性和位置选择性。当环氧化物位于3,4 -位时,苄基碳是优先攻击位点,而对于湾区四氢-1,2 -环氧化物的对映体,化学活性较低的非苄基碳是优先位点。本文根据该酶疏水结合位点的可能模型讨论了环氧化物水解酶的区域选择性和对映选择性。