Suppr超能文献

品牌:品牌认知与态度规范数据库。

BRAND: Brand recognition and attitude norms database.

作者信息

Raffaelli Carolina, Bocchi Elena, Estes Zachary, Adelman James S

机构信息

University of California San Diego, La Jolla, USA.

City University of London, London, UK.

出版信息

Behav Res Methods. 2024 Dec 16;57(1):17. doi: 10.3758/s13428-024-02525-x.

Abstract

Research involving brands has increased substantially in recent decades. However, no extensive and free dataset of consumer responses to branding stimuli exists. The present research develops and validates such a dataset, which we call the Brand Recognition and Attitude Norms Database (BRAND). BRAND is the most comprehensive set of methodologically transparent, freely available, research-relevant consumer responses to branding stimuli, with measures of familiarity (awareness), liking (attitudes), and memory (recognition) of more than 500 top brands and their logos, spanning 32 industries. BRAND includes 5,356 primary datapoints aggregated from 244,400 raw datapoints (i.e., individual familiarity, liking, and memory responses) collected from 2000 US-resident consumers in 2 years (i.e., 2020 and 2024). The data exhibit good reliability, face validity, external validity, robustness across samples and time, cross-validity, and discriminant validity. BRAND can be broadly useful for testing hypotheses involving responses to brands, and for selecting stimuli in any study involving brands or logos. Thus, BRAND can facilitate research not only in consumer behavior and psychology but also in several related academic disciplines (e.g., economics, management, marketing).

摘要

近几十年来,涉及品牌的研究大幅增加。然而,目前还没有广泛且免费的消费者对品牌刺激反应的数据集。本研究开发并验证了这样一个数据集,我们将其称为品牌认知与态度规范数据库(BRAND)。BRAND是一套方法透明、免费获取且与研究相关的消费者对品牌刺激反应的最全面数据集,包含对500多个顶级品牌及其标志的熟悉度(认知)、喜爱度(态度)和记忆(识别)测量,涵盖32个行业。BRAND包含从2000名美国居民消费者在两年(即2020年和2024年)收集的244,400个原始数据点(即个人熟悉度、喜爱度和记忆反应)汇总而来的5,356个主要数据点。这些数据具有良好的可靠性、表面效度、外部效度、跨样本和时间的稳健性、交叉效度以及区分效度。BRAND可广泛用于检验涉及对品牌反应的假设,以及在任何涉及品牌或标志的研究中选择刺激因素。因此,BRAND不仅可以促进消费者行为和心理学领域的研究,还能推动几个相关学术学科(如经济学、管理学、市场营销学)的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abff/11649726/ae098b86b189/13428_2024_2525_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验