Colom Xavier, Farrés Laia, Mujal Ramon, Wang Shifeng, Cañavate Javier
Department of Chemical Engineering, Universitat Politècnica de Catalunya Barcelona Tech, C/Colom, 1, 08222 Terrassa, Barcelona, Spain.
Department of Electrical Engineering, Universitat Politècnica de Catalunya Barcelona Tech, C/Colom, 1, 08222 Terrassa, Barcelona, Spain.
Polymers (Basel). 2024 Nov 24;16(23):3270. doi: 10.3390/polym16233270.
The large number of tires produced annually demands new recycling methods. A key challenge associated with recycling elastomers is their crosslinking structure that prevents fusion. It is possible to reverse crosslinking through a process called devulcanization. Devulcanized elastomers can be blended with fresh rubber and revulcanized for reuse. This paper examines samples made from natural rubber (NR), styrene-butadiene rubber (SBR), and nitrile butadiene rubber (NBR), blended with varying proportions of devulcanized ground tire rubber (dGTR) and newly revulcanized rubber. SiO, commonly present in tire formulations, is also added. Samples of these materials, with 0, 10, 20, and 40 phr of dGTR are subjected to accelerated degradation for 0, 30, 60, 120, and 240 h. The effects of this treatment, the influence of SiO, and the presence of a silane-based devulcanization agent (TESPT) that promotes the interaction between the rubber and silica, are analyzed at the microstructural level (FTIR, TGA, SEM) and through mechanical properties testing. The microstructural results of the spectroscopy and thermal analysis show that interactions between dGTR, silica, and silane compounds form aggregates that impact the material properties and degradation of the tires. Mechanically, when the sample contained up to 20 phr of dGTR, the compound presented a more brittle behavior, due to the crosslinking induced by the degradation.
每年生产的大量轮胎需要新的回收方法。与回收弹性体相关的一个关键挑战是它们的交联结构会阻止融合。通过一种称为脱硫的过程可以使交联逆转。脱硫后的弹性体可以与新鲜橡胶混合并重新硫化以供再利用。本文研究了由天然橡胶(NR)、丁苯橡胶(SBR)和丁腈橡胶(NBR)制成的样品,它们与不同比例的脱硫磨碎轮胎橡胶(dGTR)和新重新硫化的橡胶混合。轮胎配方中常见的SiO也被添加。这些材料的样品,分别含有0、10、20和40 phr的dGTR,在0、30、60、120和240小时内进行加速降解。在微观结构层面(傅里叶变换红外光谱法、热重分析法、扫描电子显微镜)并通过力学性能测试,分析了这种处理的效果、SiO的影响以及促进橡胶与二氧化硅之间相互作用的硅烷基脱硫剂(TESPT)的存在情况。光谱学和热分析的微观结构结果表明,dGTR、二氧化硅和硅烷化合物之间的相互作用形成了聚集体,影响了轮胎的材料性能和降解情况。在力学方面,当样品中dGTR含量高达20 phr时,由于降解引发的交联,该化合物表现出更脆的行为。