Suppr超能文献

一种用于高通量类器官成像的琼脂糖微流控芯片。

An agarose fluidic chip for high-throughput organoid imaging.

作者信息

De Beuckeleer Sarah, Vanhooydonck Andres, Van Den Daele Johanna, Van De Looverbosch Tim, Asselbergh Bob, Kim Hera, Campsteijn Coen, Ponsaerts Peter, Watts Regan, De Vos Winnok H

机构信息

Laboratory of Cell Biology and Histology, Faculty of Biomedical, Pharmaceutical and Veterinary sciences, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.

Faculty of Design Sciences, Department of Product Development, University of Antwerp, Paardenmarkt 94, 2000 Antwerp, Belgium.

出版信息

Lab Chip. 2025 Jan 14;25(2):235-252. doi: 10.1039/d4lc00459k.

Abstract

Modern cell and developmental biology increasingly relies on 3D cell culture systems such as organoids. However, routine interrogation with microscopy is often hindered by tedious, non-standardized sample mounting, limiting throughput. To address these bottlenecks, we have developed a pipeline for imaging intact organoids in flow, utilizing a transparent agarose fluidic chip that enables efficient and consistent recordings with theoretically unlimited throughput. The chip, cast from a custom-designed 3D-printed mold, is coupled to a mechanically controlled syringe pump for fast and precise sample positioning. We benchmarked this setup on a commercial digitally scanned light sheet microscope with cleared glioblastoma spheroids. Spheroids of varying sizes were positioned in the field of view with micrometer-level stability, achieving a throughput of 40 one-minute recordings per hour. We further showed that sample positioning could be automated through online feedback microscopy. The optical quality of the agarose chip outperformed FEP tubing, glass channels and PDMS casts for the clearing agents used, as demonstrated by image contrast profiles of spheroids stained with a fluorescent nuclear counterstain and further emphasized by the resolution of fine microglial ramifications within cerebral organoids. The retention of image quality throughout 500 μm-sized spheroids enabled comprehensive spatial mapping of live and dead cells based on their nuclear morphology. Finally, imaging a batch of knockout wildtype astrocytoma spheroids revealed significant differences in their DNA damage response, underscoring the system's sensitivity and throughput. Overall, the fluidic chip design provides a cost-effective, accessible, and efficient solution for high-throughput organoid imaging.

摘要

现代细胞与发育生物学越来越依赖于类器官等三维细胞培养系统。然而,显微镜常规检测常常受到繁琐、非标准化样本固定的阻碍,限制了通量。为解决这些瓶颈问题,我们开发了一种用于对流动中的完整类器官进行成像的流程,利用一种透明琼脂糖微流控芯片,该芯片能够以理论上无限的通量进行高效且一致的记录。该芯片由定制设计的三维打印模具浇铸而成,与机械控制的注射泵相连,用于快速精确地定位样本。我们在一台商用数字扫描光片显微镜上,以清除后的胶质母细胞瘤球体为样本,对该装置进行了基准测试。不同大小的球体以微米级的稳定性定位在视野中,每小时可实现40次一分钟记录的通量。我们进一步表明,通过在线反馈显微镜可以实现样本定位的自动化。对于所使用的清除剂,琼脂糖芯片的光学质量优于氟乙烯丙烯(FEP)管、玻璃通道和聚二甲基硅氧烷(PDMS)铸型,这通过用荧光核复染剂染色的球体的图像对比度剖面得以证明,并且在脑类器官内小胶质细胞细分支的分辨率中得到进一步强调。在整个500微米大小的球体中保持图像质量,使得能够基于活细胞和死细胞的核形态对其进行全面的空间映射。最后,对一批基因敲除野生型星形细胞瘤球体进行成像,揭示了它们在DNA损伤反应方面的显著差异,突出了该系统的灵敏度和通量。总体而言,微流控芯片设计为高通量类器官成像提供了一种经济高效、易于使用且高效的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验