Jiang Hubiao, Xu Xinyan, Lv Luqiong, Huang Xuefang, Ahmed Temoor, Tian Ye, Hu Shiqi, Chen Jianping, Li Bin
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Department of Life Sciences, Western Caspian University, Baku AZ1000, Azerbaijan.
J Agric Food Chem. 2025 Jan 8;73(1):249-259. doi: 10.1021/acs.jafc.4c09178. Epub 2024 Dec 17.
Rice bacterial leaf blight, caused by pv (), is a significant threat to global food security. Although the microbiome plays an important role in protecting plant health, how the phyllosphere microbiome is recruited and the underlying disease resistance mechanism remain unclear. This study investigates how rice phyllosphere microbiomes respond to pathogen invasion through a comprehensive multiomics approach, exploring the mechanisms of microbial defense and host resistance. We discovered that infection significantly reshapes the physicosphere microbial community. The bacterial network became more complex, with increased connectivity and interactions following infection. Metabolite profiling revealed that l-ornithine was a key compound to recruiting three keystone microbes, (YB12), (YN26), and (YN10). These microbes reduced the disease index by up to 67.6%, and these microbes demonstrated distinct defense mechanisms. Brevundimonas directly antagonized by disrupting cell membrane structures, while Pantoea and Stenotrophomonas enhanced plant immune responses by significantly increasing salicylic acid and jasmonic acid levels and activating defense-related enzymes. Our findings provide novel insights into plant-microbe interactions, demonstrating how host metabolic changes recruit and activate beneficial phyllosphere microbes to combat pathogenic invasion. This research offers promising strategies for sustainable agricultural practices and disease management.
水稻白叶枯病由稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv. oryzae)引起,对全球粮食安全构成重大威胁。尽管微生物群落在保护植物健康方面发挥着重要作用,但叶际微生物群是如何被招募的以及潜在的抗病机制仍不清楚。本研究通过全面的多组学方法研究水稻叶际微生物群如何应对病原体入侵,探索微生物防御和宿主抗性的机制。我们发现,感染显著重塑了物理空间微生物群落。细菌网络变得更加复杂,感染后连通性和相互作用增加。代谢物分析表明,L-鸟氨酸是招募三种关键微生物的关键化合物,分别是短短芽孢杆菌(Brevundimonas sp. YB12)、泛菌属(Pantoea sp. YN26)和嗜麦芽窄食单胞菌(Stenotrophomonas sp. YN10)。这些微生物使疾病指数降低了67.6%,并且这些微生物表现出不同的防御机制。短短芽孢杆菌通过破坏细胞膜结构直接拮抗稻黄单胞菌,而泛菌属和嗜麦芽窄食单胞菌则通过显著提高水杨酸和茉莉酸水平并激活防御相关酶来增强植物免疫反应。我们的研究结果为植物-微生物相互作用提供了新的见解,展示了宿主代谢变化如何招募和激活有益的叶际微生物来对抗病原体入侵。这项研究为可持续农业实践和疾病管理提供了有前景的策略。