Cacchione Stefano, Cenci Giovanni, Dion-Côté Anne-Marie, Barbash Daniel A, Raffa Grazia Daniela
Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.
Fondazione Cenci Bolognetti, Istituto Pasteur, 00161 Roma, Italy.
Cold Spring Harb Perspect Biol. 2025 Mar 3;17(3):a041708. doi: 10.1101/cshperspect.a041708.
Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, relies on retrotransposable elements-specifically , , and (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms. This unique telomere capping mechanism highlights an alternative evolutionary strategy to compensate for telomerase loss. The modulation of recombination and transcription at telomeres offers insights into the diverse mechanisms of telomere maintenance. Recent studies at the population level have begun to reveal the architecture of telomere arrays, the diversity among the HTT subfamilies, and their relative frequencies, aiming to understand whether and how these elements have evolved to reach an equilibrium with the host and to resolve genetic conflicts. Further studies may shed light on the complex relationships between telomere transcription, recombination, and maintenance, underscoring the adaptive plasticity of telomeric complexes across eukaryotes.
端粒维持对于防止线性真核染色体末端被误认为是DNA双链断裂至关重要,从而避免染色体融合和遗传物质的丢失。与大多数使用端粒酶进行端粒维持的真核生物不同,[具体物种]依赖反转录转座元件——特别是[元件名称1]、[元件名称2]和[元件名称3](统称为HTT)——这些元件受到调控并精确靶向染色体末端。[具体物种]的端粒保护由一组快速进化的蛋白质介导,称为端粒蛋白,它们无序列特异性地结合到染色体末端,平衡DNA损伤反应因子以避免错误的修复机制。这种独特的端粒封盖机制突出了一种补偿端粒酶缺失的替代进化策略。[具体物种]端粒处重组和转录的调控为端粒维持的多种机制提供了见解。最近在群体水平上的研究已经开始揭示端粒阵列的结构、HTT亚家族之间的多样性及其相对频率,旨在了解这些元件是否以及如何进化以与宿主达到平衡并解决遗传冲突。进一步的研究可能会阐明端粒转录、重组和维持之间的复杂关系,强调了真核生物中端粒复合体的适应性可塑性。