Suppr超能文献

PB2 627V和HA 217位点协同影响H9N2对小鼠的致死性。

PB2 627V and HA 217 sites synergistically affect the lethality of H9N2 in mice.

作者信息

Zhao Lingcai, Tian Miao, Hu Xifeng, Fan Menglu, Hou Chenglin, Ping Jihui

机构信息

MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.

出版信息

Virol Sin. 2025 Feb;40(1):35-49. doi: 10.1016/j.virs.2024.12.003. Epub 2024 Dec 17.

Abstract

The H9N2 subtype avian influenza virus (AIV) continues to propagate and undergo evolution within China, thereby posing a significant threat to the poultry industry. This study encompassed the collection of 436 samples and swabs in East China over the period spanning 2018 to 2019, from which 31 strains of the H9N2 subtype viruses were isolated and purified. We revealed that the HA and NA genes of the 31 isolates categorized within the Y280 branch, while the PB2 and M genes were associated with the G1 branch, and the remaining genes aligned with the F/98 branch. Despite this alignment, antigenic mapping demonstrated differences between the 2018 and 2019 strains, with the early vaccine strains displaying low serological reactivity toward these isolates. Notably, the CK/SH/49/19 isolate exhibited lethality in mice, characterized by a PB2 E627V mutation and a HA deletion at amino acid position 217. Mechanistically, in vitro studies showed that the influenza virus CK/SH/49/19 carrying PB2 627V and HA 217​M mutations displayed enhanced replication capacity, attributed to the heightened activity of the polymerase with PB2 627V. Moreover, the absence of the amino acid at the HA 217 site obstructed viral adsorption and internalization, resulted in lower activation pH, and impeded the virus budding process. Critically, in vivo experiments revealed that CK/SH/49/19 (PB2 627V, HA 217Δ) triggered a robust activation of interferon response and interferon-stimulated genes. This study furnished a theoretical foundation for the scientific prevention and control strategies against H9N2 subtype avian influenza.

摘要

H9N2亚型禽流感病毒(AIV)在中国持续传播并发生进化,对家禽业构成重大威胁。本研究收集了2018年至2019年期间中国东部的436份样本和拭子,从中分离并纯化出31株H9N2亚型病毒。我们发现,31株分离株的HA和NA基因属于Y280分支,而PB2和M基因与G1分支相关,其余基因与F/98分支一致。尽管有这种一致性,但抗原图谱显示2018年和2019年的毒株之间存在差异,早期疫苗毒株对这些分离株的血清学反应较低。值得注意的是,CK/SH/49/19分离株在小鼠中表现出致死性,其特征为PB2 E627V突变和HA氨基酸位置217处的缺失。从机制上讲,体外研究表明,携带PB2 627V和HA 217M突变的流感病毒CK/SH/49/19显示出增强的复制能力,这归因于PB2 627V聚合酶活性的提高。此外,HA 217位点氨基酸的缺失阻碍了病毒的吸附和内化,导致较低的激活pH值,并阻碍了病毒出芽过程。至关重要的是,体内实验表明CK/SH/49/19(PB2 627V,HA 217Δ)引发了干扰素反应和干扰素刺激基因的强烈激活。本研究为H9N2亚型禽流感的科学防控策略提供了理论基础。

相似文献

1
PB2 627V and HA 217 sites synergistically affect the lethality of H9N2 in mice.
Virol Sin. 2025 Feb;40(1):35-49. doi: 10.1016/j.virs.2024.12.003. Epub 2024 Dec 17.
4
Analysis of the phylogeny of Chinese H9N2 avian influenza viruses and their pathogenicity in mice.
Arch Virol. 2014 Oct;159(10):2575-86. doi: 10.1007/s00705-014-2110-7. Epub 2014 May 17.
6
Recent H9N2 avian influenza virus lost hemagglutination activity due to a K141N substitution in hemagglutinin.
J Virol. 2024 Apr 16;98(4):e0024824. doi: 10.1128/jvi.00248-24. Epub 2024 Mar 11.
7
Assessment of the internal genes of influenza A (H7N9) virus contributing to high pathogenicity in mice.
J Virol. 2015 Jan;89(1):2-13. doi: 10.1128/JVI.02390-14. Epub 2014 Oct 15.
8
Isoleucine at position 137 of haemagglutinin acts as a mammalian adaptation marker of H9N2 avian influenza virus.
Emerg Microbes Infect. 2025 Dec;14(1):2455597. doi: 10.1080/22221751.2025.2455597. Epub 2025 Jan 31.
9
Mutations in PB2 and HA enhanced pathogenicity of H4N6 avian influenza virus in mice.
J Gen Virol. 2020 Sep;101(9):910-920. doi: 10.1099/jgv.0.001192.

引用本文的文献

1
The miR-302 cluster-IRFs-IRF1AS axis regulates influenza A virus replication in a species-specific manner.
mBio. 2025 Aug 13;16(8):e0137525. doi: 10.1128/mbio.01375-25. Epub 2025 Jul 8.

本文引用的文献

2
Evolution of H7N9 highly pathogenic avian influenza virus in the context of vaccination.
Emerg Microbes Infect. 2024 Dec;13(1):2343912. doi: 10.1080/22221751.2024.2343912. Epub 2024 Apr 29.
3
Novel H10N3 avian influenza viruses: a potential threat to public health.
Lancet Microbe. 2024 May;5(5):e417. doi: 10.1016/S2666-5247(23)00409-3. Epub 2024 Jan 31.
4
M6PR interacts with the HA2 subunit of influenza A virus to facilitate the fusion of viral and endosomal membranes.
Sci China Life Sci. 2024 Mar;67(3):579-595. doi: 10.1007/s11427-023-2471-4. Epub 2023 Nov 22.
5
Evolution and biological characterization of H5N1 influenza viruses bearing the clade 2.3.2.1 hemagglutinin gene.
Emerg Microbes Infect. 2024 Dec;13(1):2284294. doi: 10.1080/22221751.2023.2284294. Epub 2024 Jan 4.
8
Highly Pathogenic Avian Influenza Virus (H5N1) Clade 2.3.4.4b Introduced by Wild Birds, China, 2021.
Emerg Infect Dis. 2023 Jul;29(7):1367-1375. doi: 10.3201/eid2907.221149.
9
TREX (transcription/export)-NP complex exerts a dual effect on regulating polymerase activity and replication of influenza A virus.
PLoS Pathog. 2022 Sep 9;18(9):e1010835. doi: 10.1371/journal.ppat.1010835. eCollection 2022 Sep.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验