Suppr超能文献

一种基于混合脑机接口以及脑电图和肌电图深度特征多任务学习的运动想象分类模型。

A motor imagery classification model based on hybrid brain-computer interface and multitask learning of electroencephalographic and electromyographic deep features.

作者信息

Cao Yingyu, Gao Shaowei, Yu Huixian, Zhao Zhenxi, Zang Dawei, Wang Chun

机构信息

College of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.

Department of Rehabilitation, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China.

出版信息

Front Physiol. 2024 Dec 5;15:1487809. doi: 10.3389/fphys.2024.1487809. eCollection 2024.

Abstract

OBJECTIVE

Extracting deep features from participants' bioelectric signals and constructing models are key research directions in motor imagery (MI) classification tasks. In this study, we constructed a multimodal multitask hybrid brain-computer interface net (2M-hBCINet) based on deep features of electroencephalogram (EEG) and electromyography (EMG) to effectively accomplish motor imagery classification tasks.

METHODS

The model first used a variational autoencoder (VAE) network for unsupervised learning of EEG and EMG signals to extract their deep features, and subsequently applied the channel attention mechanism (CAM) to select these deep features and highlight the advantageous features and minimize the disadvantageous ones. Moreover, in this study, multitask learning (MTL) was applied to train the 2M-hBCINet model, incorporating the primary task that is the MI classification task, and auxiliary tasks including EEG reconstruction task, EMG reconstruction task, and a feature metric learning task, each with distinct loss functions to enhance the performance of each task. Finally, we designed module ablation experiments, multitask learning comparison experiments, multi-frequency band comparison experiments, and muscle fatigue experiments. Using leave-one-out cross-validation(LOOCV), the accuracy and effectiveness of each module of the 2M-hBCINet model were validated using the self-made MI-EEMG dataset and the public datasets WAY-EEG-GAL and ESEMIT.

RESULTS

The results indicated that compared to comparative models, the 2M-hBCINet model demonstrated good performance and achieved the best results across different frequency bands and under muscle fatigue conditions.

CONCLUSION

The 2M-hBCINet model constructed based on EMG and EEG data innovatively in this study demonstrated excellent performance and strong generalization in the MI classification task. As an excellent end-to-end model, 2M-hBCINet can be generalized to be used in EEG-related fields such as anomaly detection and emotion analysis.

摘要

目的

从参与者的生物电信号中提取深度特征并构建模型是运动想象(MI)分类任务的关键研究方向。在本研究中,我们基于脑电图(EEG)和肌电图(EMG)的深度特征构建了一个多模态多任务混合脑机接口网络(2M-hBCINet),以有效完成运动想象分类任务。

方法

该模型首先使用变分自编码器(VAE)网络对EEG和EMG信号进行无监督学习,以提取其深度特征,随后应用通道注意力机制(CAM)来选择这些深度特征,突出优势特征并最小化劣势特征。此外,在本研究中,应用多任务学习(MTL)来训练2M-hBCINet模型,纳入主要任务即MI分类任务,以及辅助任务,包括EEG重建任务、EMG重建任务和特征度量学习任务,每个任务都有不同的损失函数以提高各任务的性能。最后,我们设计了模块消融实验、多任务学习比较实验、多频段比较实验和肌肉疲劳实验。使用留一法交叉验证(LOOCV),利用自制的MI-EEMG数据集以及公共数据集WAY-EEG-GAL和ESEMIT验证了2M-hBCINet模型各模块的准确性和有效性。

结果

结果表明,与对比模型相比,2M-hBCINet模型表现良好,在不同频段和肌肉疲劳条件下均取得了最佳结果。

结论

本研究基于EMG和EEG数据创新性构建的2M-hBCINet模型在MI分类任务中表现出优异的性能和强大的泛化能力。作为一个优秀的端到端模型,2M-hBCINet可推广应用于异常检测和情感分析等与EEG相关的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a6/11655504/0d06ecfd090a/fphys-15-1487809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验