Suppr超能文献

一种基于残差密集网络的叠层成像重建方法。

A reconstruction method for ptychography based on residual dense network.

作者信息

Liu Mengnan, Han Yu, Xi Xiaoqi, Li Lei, Xu Zijian, Zhang Xiangzhi, Zhu Linlin, Yan Bin

机构信息

Henan Key Laboratory of Imaging and Intelligent Processing, Information Engineering University, Zhengzhou, Henan, China.

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.

出版信息

J Xray Sci Technol. 2024;32(6):1505-1519. doi: 10.3233/XST-240114.

Abstract

BACKGROUND

Coherent diffraction imaging (CDI) is an important lens-free imaging method. As a variant of CDI, ptychography enables the imaging of objects with arbitrary lateral sizes. However, traditional phase retrieval methods are time-consuming for ptychographic imaging of large-size objects, e.g., integrated circuits (IC). Especially when ptychography is combined with computed tomography (CT) or computed laminography (CL), time consumption increases greatly.

OBJECTIVE

In this work, we aim to propose a new deep learning-based approach to implement a quick and robust reconstruction of ptychography.

METHODS

Inspired by the strong advantages of the residual dense network for computer vision tasks, we propose a dense residual two-branch network (RDenPtycho) based on the ptychography two-branch reconstruction architecture for the fast and robust reconstruction of ptychography. The network relies on the residual dense block to construct mappings from diffraction patterns to amplitudes and phases. In addition, we integrate the physical processes of ptychography into the training of the network to further improve the performance.

RESULTS

The proposed RDenPtycho is evaluated using the publicly available ptychography dataset from the Advanced Photon Source. The results show that the proposed method can faithfully and robustly recover the detailed information of the objects. Ablation experiments demonstrate the effectiveness of the components in the proposed method for performance enhancement.

SIGNIFICANCE

The proposed method enables fast, accurate, and robust reconstruction of ptychography, and is of potential significance for 3D ptychography. The proposed method and experiments can resolve similar problems in other fields.

摘要

背景

相干衍射成像(CDI)是一种重要的无透镜成像方法。作为CDI的一种变体,叠层成像术能够对任意横向尺寸的物体进行成像。然而,传统的相位恢复方法对于大尺寸物体(如集成电路(IC))的叠层成像来说耗时较长。特别是当叠层成像术与计算机断层扫描(CT)或计算机分层摄影(CL)结合时,时间消耗会大幅增加。

目的

在这项工作中,我们旨在提出一种基于深度学习的新方法,以实现叠层成像术的快速且稳健的重建。

方法

受残差密集网络在计算机视觉任务中的强大优势启发,我们基于叠层成像术的双分支重建架构提出了一种密集残差双分支网络(RDenPtycho),用于叠层成像术的快速且稳健的重建。该网络依靠残差密集块来构建从衍射图案到振幅和相位的映射。此外,我们将叠层成像术的物理过程整合到网络训练中,以进一步提高性能。

结果

使用来自先进光子源的公开可用叠层成像术数据集对所提出的RDenPtycho进行评估。结果表明,所提出的方法能够忠实地且稳健地恢复物体的详细信息。消融实验证明了所提出方法中各组件对性能提升的有效性。

意义

所提出的方法能够实现叠层成像术的快速、准确且稳健的重建,对三维叠层成像术具有潜在意义。所提出的方法和实验能够解决其他领域的类似问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验