Price Edward, Saulnier Virginia, Kalvass John Cory, Doktor Stella, Weinheimer Manuel, Hassan Majdi, Scholz Spencer, Nijsen Marjoleen, Jenkins Gary
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, United States.
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, United States.
J Pharm Sci. 2025 Feb;114(2):1186-1195. doi: 10.1016/j.xphs.2024.12.006. Epub 2024 Dec 18.
Biopharmaceutical companies generate a wealth of data, ranging from in silico physicochemical properties and machine learning models to both low and high-throughput in vitro assays and in vivo studies. To effectively harnesses this extensive data, we introduce a statistical methodology facilitated by Accuracy, Utility, and Rank Order Assessment (AURA), which combines basic statistical analyses with dynamic data visualizations to evaluate endpoint effectiveness in predicting intestinal absorption. We demonstrated that various physicochemical properties uniquely influence intestinal absorption on a project-specific basis, considering factors like intestinal efflux, passive permeability, and clearance. Projects within both the "Rule of 5" (Ro5) and beyond "Rule of 5" (bRo5) space present unique absorption challenges, emphasizing the need for tailored optimization strategies over one-size-fits-all approaches. This is corroborated by the improved accuracy of project-specific correlations over global models. The differences in correlations between and within project teams-due to their unique chemical spaces-highlight how complex and nuanced the prediction of intestinal absorption can be. Here, we implement a standardized methodology, AURA, that any organization can incorporate into their workflow to enhance early-stage drug optimization. By automating analytics, integrating diverse data types, and offering flexible visualizations, AURA enables cross-functional teams to make data-driven decisions, optimize workflows, and enhance research efficiency.
生物制药公司会产生大量数据,从计算机模拟的物理化学性质和机器学习模型到低通量和高通量的体外试验以及体内研究。为了有效利用这些海量数据,我们引入了一种由准确性、实用性和排序评估(AURA)推动的统计方法,该方法将基本统计分析与动态数据可视化相结合,以评估预测肠道吸收的终点有效性。我们证明,考虑到肠道外排、被动通透性和清除率等因素,各种物理化学性质在特定项目的基础上对肠道吸收有独特影响。“五规则”(Ro5)范围内和“五规则”之外(bRo5)的项目都存在独特的吸收挑战,这凸显了需要针对具体情况制定优化策略,而不是采用一刀切的方法。特定项目相关性的准确性高于全局模型,这证实了这一点。由于项目团队之间及其内部的化学空间独特,它们之间相关性的差异凸显了肠道吸收预测可能有多复杂和微妙。在此,我们实施了一种标准化方法AURA,任何组织都可以将其纳入工作流程,以加强早期药物优化。通过自动化分析、整合不同数据类型并提供灵活的可视化,AURA使跨职能团队能够做出数据驱动的决策、优化工作流程并提高研究效率。