Ren Yanmei, Sun Jianan, Mao Xiangzhao
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
Food Chem. 2025 Mar 30;469:142449. doi: 10.1016/j.foodchem.2024.142449. Epub 2024 Dec 10.
During storage, the proteins of gazami crab (Portunus trituberculatus) are prone to hydrolysis into amino acids and biogenic amines, in which enzymes play a critical role. However, studies exploring spoilage mechanisms from the perspective of enzymes are limited. This study identified 84 endogenous and 52 microbial-derived proteolytic enzymes and peptidases by proteomics and metagenomics. There are 7 endogenous amino acid deaminases, primarily degrade glutamate and aspartate. Additionally, 25 amino acid deaminases of microbial origin were identified, which mainly degrade serine. The formation of biogenic amines involved 14 enzymes, all of which were microbial in origin, primarily synthesizing putrescine from arginine. The main microbial contributors to these enzymes were Photobacterium, Vibrio, and Aliivibrio, accounting for 63.87 %, 15.51 %, and 8.69 % at the end of refrigeration, respectively. This study provides insights into the mechanisms of quality deterioration in gazami crab during refrigeration, from the perspectives of metabolic enzymes and microbial activity.