Liu Feifan, Wang Jianyu, Song Yufeng, Wu Fei, Wu Haihu, Lyu Jiaju, Ning Hao
Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, P.R. China.
Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, P.R. China.
Future Oncol. 2025 Feb;21(4):463-471. doi: 10.1080/14796694.2024.2445499. Epub 2024 Dec 23.
BACKGROUND: The global incidence of prostate cancer (PCa) is rising, necessitating improved diagnostic strategies. This study explores coagulation parameters' predictive value for clinically significant PCa (csPCa) and develops a nomogram. RESEARCH DESIGN AND METHODS: This study retrospectively analyzed data from 702 patients who underwent prostate biopsy at Shandong Provincial Hospital (SDPH) and 142 patients at Shandong Cancer Hospital and Institute (SDCHI). SDPH patients were randomly assigned at a 7:3 ratio for internal validation, while SDCHI data served as external validation. LASSO and logistic regression identified the best predictive factors for csPCa, which were used to construct a model. The model's efficacy was tested using AUC, calibration curves, and decision curve analysis. RESULTS: TPSA, age, D-dimer, prostate volume (PV), and digital rectal examination (DRE) were identified as independent risk factors for csPCa. A predictive model was constructed using a nomogram. The AUC for the training set was 0.841, for internal validation 0.809, and for external validation 0.814. Calibration and decision curves confirmed the model's clinical utility. CONCLUSIONS: The nomogram incorporating D-dimer, TPSA, age, PV, and DRE provides a highly accurate tool for assessing csPCa risk in individuals with PSA levels of 4-20 ng/mL, supporting personalized diagnostics and clinical decision-making.
背景:前列腺癌(PCa)的全球发病率正在上升,因此需要改进诊断策略。本研究探讨凝血参数对临床显著性前列腺癌(csPCa)的预测价值,并开发一种列线图。 研究设计与方法:本研究回顾性分析了山东省立医院(SDPH)702例接受前列腺活检患者以及山东省肿瘤医院暨山东省肿瘤防治研究院(SDCHI)142例患者的数据。SDPH患者按7:3的比例随机分配用于内部验证,而SDCHI的数据用作外部验证。LASSO和逻辑回归确定了csPCa的最佳预测因素,并用于构建模型。使用AUC、校准曲线和决策曲线分析对模型的有效性进行了测试。 结果:总前列腺特异性抗原(TPSA)、年龄、D-二聚体、前列腺体积(PV)和直肠指检(DRE)被确定为csPCa的独立危险因素。使用列线图构建了一个预测模型。训练集的AUC为0.841,内部验证为0.809,外部验证为0.814。校准曲线和决策曲线证实了该模型的临床实用性。 结论:包含D-二聚体、TPSA、年龄、PV和DRE的列线图为评估总前列腺特异性抗原水平在4-20 ng/mL的个体发生csPCa的风险提供了一种高度准确的工具,支持个性化诊断和临床决策。
Front Endocrinol (Lausanne). 2025-6-5
Clin Orthop Relat Res. 2024-9-1